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Abstract
Domain specific aspect languages (DSALs) are becoming more
popular because they can be designed to represent recurring con-
cerns in a way that is optimized for a specific domain. However,
the design and implementation of even a limited domain-specific
aspect language can be a tedious job. To address this, we propose
a framework that offers a fast way to prototype implementations of
domain specific aspect languages. A particular goal of the frame-
work is to be general enough to support a wide range of aspect lan-
guage concepts, such that existing language concepts can be easily
used, and new language concepts can be quickly created.

We show mappings of several domain specific aspect languages
to demonstrate the framework. Since in our approach the DSALs
are mapped to a common model, the framework provides an inte-
grating platform allowing us to compose programs that use aspects
written in multiple DSALs. The framework also provides explicit
mechanisms to specify composition of advices written in multiple
DSALs.

1. Introduction
The benefits of using domain specific aspect languages (DSALs)
are widely recognized [5, 11, 18]. In fact, the idea of expressing
each crosscutting concern using a dedicated domain-specific lan-
guage was at the very heart of the first proposals called “AOP” [8].

However, designing and implementing DSALs can be a tedious job.
For example, each aspect language has to define under which cir-
cumstances an aspect should influence the program, and implement
mechanisms to facilitate this (e.g. using bytecode weaving).

In addition, most applications will need to express concerns from
different problem domains, making it desirable to write programs
using multiple DSALs. That way, each DSAL could be used to
effectively address the concerns within its specific domain.

It is not trivial to compose aspects expressed in several DSALs
however, as each language typically constructs its own model of
the program; unless a lot of care is taken, the effects of one aspect
may not be reflected in the models constructed by other DSALs. In
addition, aspects written in several DSALs may interact with each
other, possibly in undesirable ways (depending on the situation).

Our paper contributes the following to address these problems:

(1) We propose an aspect interpreter framework that can be used
to prototype domain specific aspect languages. As our framework
supports a wide range of aspect language concepts, it can be used
to prototype diverse DSALs in a reasonable amount of time, as we
will show in section 3.

(2) Using our approach, aspects written in several (domain-specific)
languages are mapped to a common model. As a result, we can
compose applications that are written using multiple DSALs, as
we will show in section 4.1.

(3) The framework provides explicit mechanisms to specify com-
position of advices, even if advices are written in several DSALs.
This is discussed in section 4.3.

In this paper, we show implementations of only two DSALs. How-
ever, our work is based on a thorough study of aspect oriented lan-
guages [14], as well as the modeling of their possible implementa-
tion mechanisms using an interpreter, as presented in [4].

In the next section, we briefly introduce the framework itself, and
discuss some of our design and implementation considerations.
Section 3 presents more details about the framework by show-
ing the implementations of several DSALs using our framework.
Section 4 discusses the composition of aspects written in multi-
ple DSALs, including specifications to resolve the interactions be-
tween aspects. We discuss related work in section 5, and conclude
the paper in section 6.

2. JAMI - an aspect interpreter framework
One of the defining features of AOP languages is the support for
”implicit invocation” of application behavior. That is, behavior
can be invoked without an explicit reference (such as a method
call statement) being visible in the (source) code at the point of
invocation. Implicit invocation is a key feature of the interface
between the base program and the aspect program. The framework
to model aspect language mechanisms we present in this paper is
strongly based on implicit invocation as the connection between the
base program and the aspects (advices).

In this section, we briefly discuss the concepts used in the aspect
language domain, based on a reference model proposed in [14]. We
then propose a framework that provides common implementations
of these concepts, while supporting variations on these concepts
found in different aspect languages. The general design and archi-
tecture of the framework was first proposed in [4] and [7]. Finally,
we briefly outline the workflow used to prototype DSALs using this
framework.

2.1 Common aspect language concepts

Aspect languages must first of all support the concept of pointcuts.
Pointcuts define the circumstances under which an aspect influ-
ences a program – for example, at certain locations (such as en-
tering a particular method) or under particular runtime conditions
(e.g., only when a variable x equals 5). Pointcuts can be seen as
predicates or conditions over the execution state of a program. The
execution state may, in a broad sense, include information about the
call stack, objects, or even the execution trace and structure of the
program. As pointcuts may match at several places or moments dur-
ing the execution of a program, the concept of joinpoints is used to
model references to the relevant execution state (e.g., which method
is being intercepted) whenever a pointcut matches. Pointcuts can be
bound to advices, which may add to or replace parts of the origi-
nal program behavior and/or its runtime state. Advices can use the
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joinpoint information to adapt their behavior based on the current
runtime situation. Finally, bindings specify how pointcuts and ad-
vices are connected and grouped into modules (usually called as-
pects). In addition, bindings are also used to bind “aspect state” –
data stored by aspects, such that it can be shared between advices
(i.e., similar to sharing state between methods by using instance
variables).

2.2 Framework implementation

Aspect languages adopt varying implementations of the concepts
listed above. We provide a framework that implements the behavior
of these high-level concepts, and allows for their refinement to
facilitate specific language implementations.

Base part

Aspect part

Interception 
mechanism

structure

call stack heap/objects

Execution state / context

<<intercepts>>

Aspect program

Joinpoint

execute

Pointcuts
matches(JP)

matches
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Advice
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Figure 1. The Java Aspect Metamodel Interpreter - an overview

Figure 1 shows a global overview of our framework, called the Java
Aspect Metamodel Interpreter (JAMI) [1]. Basically, this frame-
work enforces the high-level structure and control flow of aspects,
while providing implementations of common concepts at an ab-
straction level that is appropriate when prototyping DSALs – as
we intend to demonstrate in section 3. By enforcing a fixed high-
level control flow, our framework provides a common platform that
enables composition of aspects written in multiple DSALs, as we
will show in section 4. To provide the flexibility required to model
features of particular languages, each concept can be either instanti-
ated in a dedicated configuration of framework elements, or refined
(extended) when necessary. JAMI provides many of the common
implementations found in different aspect languages.

2.2.1 Control flow

We briefly discuss the high-level control flow within JAMI. In prin-
ciple, the base program (a normal Java application) runs as it would
without the interpreter. However, the interception mechanism (see
figure 1) intercepts the control flow at any point that is of potential
interest to the aspect interpreter. Our current implementation uses
a regular AspectJ aspect to intercept all method calls and field as-
signments1. Apart from intercepting method calls, the mechanism
keeps track of context information that may be of interest to the
framework. Currently, it keeps track of the call stack, senders, tar-
gets, and method signatures of all calls on the stack, as well as
field assignments. Upon interception of the control flow, the mech-
anism creates a joinpoint object representing the current joinpoint.
A refinement class exists for each different joinpoint type, such as
MethodCallJoinpoint, MethodReturnJoinPoint or AssignmentJoin-
point. Each of these joinpoint objects keeps a reference to the rele-

1 The use of an AspectJ aspect as an interception mechanism limits the join-
point granularity to what is supported by AspectJ. However, the intercep-
tion mechanism consists of only 100 lines of code, and could easily be
replaced if support for finer joinpoint granularity is desired.

vant context information - e.g., the method that was executing upon
interception, etc.

Subsequently, each pointcut registered with the aspect interpreter is
evaluated against the current joinpoint (see figure 1). As indicated
before, pointcuts are basically conditions that either match or do not
match a particular joinpoint. Thus, the main pointcut class consists
of only an evaluate method, which returns true or false based on
whether it matches the current joinpoint. Refinement classes are
provided for many common pointcut conditions; new ones can be
created if necessary to implement DSAL-specific pointcut types.
For example, we provide pointcuts that match based on the type
of joinpoint, method signature, or target object type. In addition,
there are pointcut classes that can combine other pointcuts using
regular logic expressions (and, or, not). Many concrete examples
of implemented pointcut conditions will be shown in section 3.

One or more pointcuts can be associated to one or more advices
using bindings (see figure 1). For each matching pointcut, the in-
terpreter looks up the corresponding advice through these bindings.
Advice can be expressed in terms of elementary advice “building
blocks” provided by JAMI, which allows the expression of many
common types of advice without creating custom implementations
for each advice. In addition, advice can be expressed using normal
base code, when necessary. Advices may also want to share state
among each other, or among different executions of the same ad-
vice. Therefore, we also provide bindings to aspect state; this will
be discussed in more detail in section 3.

When several pointcuts match at the same joinpoint, the order of
advice execution has to be resolved. This issue is discussed in detail
in section 4.

3. Features of JAMI, demonstrated by example
In this section, we show 2 aspect languages optimized for a specific
task, implemented using the Java Aspect Metamodel Interpreter.
We first introduce a running example that we will use to demon-
strate each language.

addLine(String)
setContent(List<String>)
getContent() : List<String>
wordCount : long

content : List<String>
Document

...
doc : Document
WordProcessor

Figure 2. Example application, used throughout the paper

Figure 2 shows the UML class-diagram of a simple word processor
application. Within this application, class Document defines some
methods to modify a document (addLine() and setContent()), a
method to obtain the document content (getContent), as well as a
method that counts the current number of words in the document
(wordCount).

In the following subsections, we extend this example using aspects
written in several domain-specific aspect languages.

3.1 Using the D/COOL domain-specific aspect language for
synchronization

To show that JAMI can be used to conveniently accommodate com-
plex, existing domain-specific languages, we implement a relevant
subset of the coordination aspect language “COOL”, which is part
of the D language framework. The language is documented exten-
sively in the dissertation describing this framework [11].

Suppose we want to add a spellchecker to our word processor,
which runs concurrently with the user interface by using a sepa-
rate thread. To ensure correct behavior when multiple threads may
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access a document concurrently, we use a synchronization speci-
fication written in COOL, as shown in listing 1. By using COOL,
we do not have to put any synchronization-related code in the Java
source code itself.

1 coordinator Document {
2 selfex addLine, setContent;
3 mutex {addLine, setContent};
4
5 mutex {addLine, getContent};
6 mutex {addLine, wordCount};
7 mutex {setContent, getContent};
8 mutex {setContent, wordCount};
9 }

Listing 1. Using COOL to synchronize reader/writer access
Listing 1 specifies that we want to coordinate instances of class
Document. Line 2 specifies that the methods addLine and setCon-
tent are self-exclusive; i.e. only 1 thread at a time may be running
those methods. Line 3 specifies that these methods are mutually
exclusive in addition; i.e. only one thread may be active in either
addLine or setContent at a given time.

Lines 5-8 also specify pairs of methods not allowed to run at
the same time - addLine and setContent are writer methods, and
should not run at the same time as reader methods getContent or
wordCount.

By default, COOL synchronizes method access per object, i.e. in
the above example, several threads can still run method addLine at
the same time, as long as they do so within different object contexts.
In addition, COOL allows to specify a per class modifier, which
makes the synchronization “global” for the specified class.

3.1.1 Mapping to JAMI

We now describe a mapping of the COOL specification above
to JAMI. First, for each method involved in a synchronization
(i.e. selfex/mutex) specification, we calculate the set of methods
that may not be entered while another thread is active within that
method. For method addLine, this “exclusion set” contains addLine
itself (because of the selfex specification on line 2), as well as
methods setContent, getContent and wordCount (because of the
mutex specifications on line 3, 5 and 6). How these exclusion sets
are determined exactly is documented in [11]; we do not repeat the
details here.

: Aspect

getInstance(Context)

coordinator : 
AspectVariable

: Per[Object/Class]InstantiationPolicy

instantiationPolicy

variable

EnteringSync(addLine)
(subview)

selectorAdvBinding

selectorAdvBinding

LeavingSync(addLine)
(subview)

EnteringSync(..)
(subview)

LeavingSync(..)
(subview)

selectorAdvBinding

selectorAdvBinding

...

Figure 3. Expressing COOL coordinators using JAMI concepts

The coordinator specification is modeled (see figure 3) as an as-
pect that defines one AspectVariable named coordinator. In JAMI,
aspects consist of bindings between selectors and advices, in addi-
tion to definitions of aspect state (aspect variables), which may be
shared between advices. In JAMI, each aspect variable has its own
“instantiation policy”. For example, a “singleton” policy means that
there is one instance of the variable for the entire program, a “per
object” policy means there is one instance of the aspect variable for
each target object (where the current target object depends on the
join point context), etc. Instantiation is usually implicit (although
it is also possible to specify explicit instantiation): new instances

are automatically created when needed (using the default construc-
tor of the specified variable type), i.e. on first use in a particular
context.

In this example, the aspect variable coordinator has a “per object”
or “per class” instantiation policy, depending on the specified gran-
ularity of the coordinator. Thus, the variable is shared between ad-
vices belonging to this coordinator, and can be used to regulate the
synchronization. In addition, two selector-advice-bindings are de-
fined for each method involved in a synchronization specification;
one will be executed upon entering the method, one upon leaving.

: SelectorAdviceBinding

: AndSelector

: AndSelector : SelectMethodCalls

toCompare = "target"
mustEqual = "Document"

: SelectByObjectType

mustEqual = "addLine(java.lang.String)"
: SelectByMethodSignature

leftExpr rightExpr

rightExpr

joinpointSelector

exclusionSet = {addLine, setContent,
                         setContent, wordCount }

: EnterSyncedContextAction
advice

leftExpr

Figure 4. Entering a synchronization context: pointcut and advice
Figure 4 shows the object diagram for the selector-advice-binding
executed upon entering method addLine. It matches only join
points of type MethodCall, of which the target object is of type
Document, and of which the signature of the called method is ad-
dLine. Before the call is executed, we execute the advice Enter-
SyncedContextAction, an advice class specific to this language.

We show the source code of this advice in listing 2. First, the
advice retrieves (line 2-4) the coordinator aspect variable instance
belonging to this specific context (i.e. object or class, depending
on the instantiation policy). This coordinator object ensures that
the synchronization “bookkeeping” itself is properly synchronized.
While the advice holds a lock on this object (line 6-21), it can
safely inspect the MethodState objects for this coordinator. For each
method (involved in synchronization), such a MethodState object
tracks which threads are currently running that method. While
other threads are active in any method in the exclusion set of the
currently invoked method (line 11,12), the advice waits (releasing
the lock on the coordinator while waiting) until this is no longer
the case (line 14-16). When the loop is left, it means the method
is free to run - after the advice registers the current thread with the
corresponding MethodState object (line 20) and releases the lock
on the coordinator object.

1 public boolean evaluate(InterpreterContext metaContext) {
2 CoordinatorImplementation coord =
3 (CoordinatorImplementation) metaContext.getAspect().
4 getDataFieldValue(metaContext, "coordinator");
5
6 synchronized(coord) {
7 boolean shouldWait;
8 do {
9 shouldWait = false;

10 // Wait while any other thread is active in any method in our exclusionset
11 for (String excludedMethod : exclusionSet)
12 shouldWait |= coord.getMethodState(excludedMethod).isActiveInOtherThread()

;
13
14 if (shouldWait) {
15 try { coord.wait(); }
16 catch(InterruptedException e) { }
17 }
18 } while (shouldWait);
19 // This method is now allowed to run, register it
20 coord.getMethodState(myMethodName).enteringMethod();
21 }
22 return true;
23 }

Listing 2. Advice executed when entering a synchronized method

To conclude the implementation, another pointcut is created to
intercept join points that occur upon leaving any of the methods
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involved in the synchronization specification. The object diagram
is analogous to figure 4, except the pointcut now matches only
join points of type MethodReturn, and executes an advice of type
LeaveSyncedContextAction. We show the source of this advice in
listing 3. The advice waits until it obtains a lock on the coordinator
object within the given context (object or class, as in the previous
advice), allowing it to update the synchronization “bookkeeping”.
Once the lock is obtained, it deregisters the current thread from
the MethodState object for this method (line 6). It then notifies all
waiting threads (if any), such that they can re-evaluate their waiting
conditions (line 8).

1 public boolean evaluate(InterpreterContext metaContext) {
2 CoordinatorImplementation coord = ...; // as in previous listing
3
4 synchronized(coord) {
5 // deregister this thread from running this method
6 coord.getMethodState(myMethodName).leavingMethod();
7 // Notify all threads (not just one), as potentially several may be allowed

to continue
8 coord.notifyAll();
9 }

10 return true;
11 }

Listing 3. Advice executed when leaving a synchronized method

3.2 An experimental DSAL to implement caching
As another example, we implement an experimental language that
introduces a modular way to specify caching of method return
values (also called memoization).

Methods (or functions) to which memoization is applied, tradition-
ally have to conform to the following conditions: (1) the method
depends on its (input) parameters only; (2) given the same input pa-
rameter values, it should return the same result every time; (3) the
method should have no side effects. Our implementation maintains
the last two requirements. However, the first requirement is often
violated in object-oriented programming, as results of a method call
are often influenced by instance variables (within the same object)
or specific method calls (on the same object). Therefore, our imple-
mentation extends the notion of memoization as defined above, by
allowing cached results to be invalidated when the value of partic-
ular fields change, or when particular methods are called.

In our example application from figure 2, the method wordCount is
a good candidate for memoization. The method has no side effects,
but depends on the value of instance variable content. This vari-
able is written by method setContent, as it contains the statement
“this.content = newContent;”. The method addLine, containing the
statement “content.add(line);” does not overwrite the instance vari-
able itself; it does however modify its contained object structure.
Therefore, calls to method addLine should also invalidate the re-
turn value of wordCount.

We specify the above using a domain specific aspect language as
shown in listing 4.

1 cache Document object {
2 memoize wordCount,
3 invalidated by assigning content
4 or calling addLine(java.lang.String);
5 }

Listing 4. Example specification of a memoization aspect

This specification means the following: apply a caching aspect on
each Document object (line 1). This caching aspect will memoize
the return value of method wordCount (line 2). The cache will
be invalidated when a new value is assigned to instance variable
content within the corresponding Document object (line 3), or when
the method addline(..) is called on the Document object (line 4).

3.2.1 Mapping to JAMI
We now show how to map the specification shown in listing 4 to
JAMI. As figure 5 shows, we create an aspect variable of type

Cache for each memoize declaration. Its instantiation policy can
again be specified as per object or per class - in the example above,
we want to cache the return value of method wordCount for each
object of type Document. The class Cache models a simple wrapper
object that can store and retrieve an object, as well as clear its
currently stored value.

: Aspect

getInstance(Context)

cache_wordCount : 
AspectVariable

: PerObjectInstantiationPolicy

instantiationPolicy

variable

before(wordCount)
(subview)

selectorAdvBinding

selectorAdvBinding

after(wordCount)
(subview)

invalidate wordCount
by assigning content

(subview)

selectorAdvBinding

invalidate wordCount
by calling addLine

(subview)

selectorAdvBinding

Figure 5. Mapping a caching aspect to JAMI concepts
For each memoized method, we need a pointcut that intercepts
calls to that method, coupled to an advice that returns the cached
value (if one is stored). Another pointcut intercepts returns from
the memoized method, coupled to an advice that stores the return
value in the cache. Finally, a pointcut is needed for each cache
validation specification, coupled with an advice that invalidates the
cache. In this example there are two such pointcuts, corresponding
to the invalidation specifications in line 3 and 4 of listing 4).

: SelectorAdviceBinding

: AndSelector

: AndSelector : SelectMethodCalls

toCompare = "target"
mustEqual = "Document"

: SelectByObjectType

mustEqual = "wordCount()"
: SelectByMethodSignature

leftExpr rightExpr

rightExpr

joinpointSelector

cacheVarName = {cache_wordCount }
: MemoizeRetrieveAction

advice

leftExpr

Figure 6. Selector-advice binding for retrieving cached values
As shown in figure 6, we intercept calls to the method of which the
results should be cached. The advice that is executed is shown in
listing 5. First, the advice retrieves the aspect variable correspond-
ing to this memoize declaration (line 2+3). If the cache currently
contains a value (which means it must have been set after a previ-
ous call), we instruct the interpreter not to execute the original call
after it finishes executing this advice (line 7), and instead to set the
return value to the value found in the cache (line 8).

1 public boolean evaluate(InterpreterContext metaContext) {
2 Cache cache = (Cache)metaContext.getAspect()
3 .getDataFieldValue(metaContext, cacheVarName);
4
5 if (cache.hasValue())
6 { // Use cached value!
7 metaContext.setExecuteOriginalCall(false);
8 metaContext.setReturnValue(cache.getValue());
9 }

10 return true;
11 }

Listing 5. Advice: retrieving a cached value
After the method returns, the advice in listing 6 is called, which
stores the return value of the method. First, the advice retrieves the
cache variable (line 3+4). Next, it stores the return value of the
called method, which can be obtained through the interpreter con-
text (line 6). Note that we do not take method parameters into ac-
count in this implementation (fortunately, the method wordCount()
does not have any). This is done to avoid cluttering the example;
adding this behavior would be straightforward.

1 public boolean evaluate(InterpreterContext metaContext)
2 {
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3 Cache cache = (Cache)metaContext.getAspect()
4 .getDataFieldValue(metaContext, cacheVarName);
5
6 cache.setValue(metaContext.getReturnValue());
7 return true;
8 }

Listing 6. Advice: storing a cached value

: SelectorAdviceBinding

: AndSelector

: AndSelector

: SelectFieldAssignments

toCompare = "target"
mustEqual = "Document"

: SelectByObjectType

mustEqual = "content"
: SelectByFieldName

leftExpr rightExpr

rightExpr

joinpointSelector

leftExpr

signature = "clearValue()"
: MethodCallAction

fromVariable = "cache_wordCount"
: SetTargetObjectFromVariableAction

: ComposedAdviceAction

advice

Figure 7. Selector-advice binding for invalidating cached values

To finalize our example, we show one of the pointcut-advice-
bindings used to invalidate the cache. Figure 7 shows a pointcut
that will match field assignments, but only to the field named con-
tent, and when the assignment takes place within an object of type
Document. The advice is to call the method clearValue on the as-
pect variable cache wordCount.

4. Composition of multiple DSALs
As each DSAL is designed to address concerns within a particular
problem domain, we would often want to combine the use of
several such languages within a single application2. Implementing
this is not straightforward however, as partial programs expressed
in several languages have to be composed into a single combined,
working application. Even if this is technically feasible (which is
not necessarily the case), running the combined application may
reveal unexpected and/or undesired results.

In this section, we discuss how several aspects written in different
DSALs (all implemented using JAMI) can be composed and used
within the same application. We discuss several difficulties that
may occur in this case, and explain how JAMI can help to address
these issues.

4.1 DSAL composition in JAMI

In general, the composition of multiple aspect languages is far from
trivial. As an example, consider the common implementation of as-
pect languages as transformation of the source code or byte code
representation of the base program (where each of these aspect
language implementations may, or may not, share a common in-
frastructure). This would require the sequential execution of aspect
language implementations over the incrementally transformed base
code. Typically, such a byte code transformation is not commu-
tative, meaning that the behavior of the resulting program could
vary, according to the –normally undefined– execution order of the
aspect language implementations. A similar story holds for the se-
quential execution of multiple aspect interpreters at each join point.

In section 3, we have shown how aspects written in several DSALs
are mapped to JAMI elements. Such aspects, expressed in terms of
JAMI elements, or refinements of JAMI elements, can be deployed

2 Note that the entire discussion about the composition of DSALs techni-
cally also holds for the composition of general purpose aspect languages,
or a mixture of these. However, we believe composition of DSALs is much
more realistic to expect, hence we focus on this.

within a single application–even though they originate from dif-
ferent aspect languages. This is enabled by the common runtime
platform provided by JAMI.

This platform defines common abstractions and a common data
structure for the representation of aspects (e.g. in terms of pointcut
expressions, advice-selector bindings, ordering constraints, etc.).
Further, the framework imposes a unified high-level control flow
for the execution of aspects, as shown schematically in figure 1.
At the same time, while adopting these predefined abstractions and
high-level control flow, for each language there is a large freedom
to define in varying ways how e.g. pointcuts can be defined and
matched.

Thus, using JAMI, it is possible to execute aspects written in differ-
ent DSALs within a single application. This does not require any
tailoring or design decisions that are specific to the other DSALs
that are combined. However, this does not guarantee that the result-
ing application will show the “correct” or “desired” behavior. As
is the case with aspects written in a single language, interactions
or interference may also occur between aspects written in different
DSALs.

This phenomenon has also been observed before: e.g. in [12], two
categories of aspect interactions are distinguished:

• co-advising: the composition of advice of multiple aspect lan-
guages at a shared join point.

• foreign advising: this corresponds to the notion of ”aspects on
aspects”, where advice from one aspect language may apply to
a join point associated with the execution of advice in another
aspect language.

In the remainder of section 4, we first discuss the issue of co-
advising, followed by an explanation of the advice composition
mechanism of JAMI in section 4.3. Although JAMI also addresses
foreign advising, we do not discuss this due to lack of space.

4.2 Co-advising

When multiple pointcuts match at the same join point, the order
in which advices bound to these pointcuts are executed may lead
to different behavior [15, 6], if there are dependencies between the
aspects. Reversely, in the absence of any ordering specification at
shared join points, the application behavior may be non-predictable
and undesirable.

The above is also true if the shared join points originate from pro-
grams written in different aspect languages. For individual lan-
guages, many mechanisms exist to deal with this.

However, when pointcuts originate from different languages, there
are two additional issues:

• We need improved or additional mechanisms to compose ad-
vices from different aspect languages. The reason is that we
(want to) assume DSALs to be developed independently, so that
aspects written in a particular DSAL are likely (and preferably)
unaware of those written in another DSAL. JAMI supports a
uniform constraint model (first proposed in [15]) that facilitates
ordering constraints within as well as between languages. We
demonstrate this below.

• There is a distinction between language-level and program-
level composition [12]. In particular for DSALs, composi-
tion constraints may be specific to a combination of DSALs,
and should apply to all aspects written in those DSALs (i.e.
language-level constraints). However, it may –in addition– be
possible that some constraints are program-specific (i.e. pro-
gram level).
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4.2.1 Example: composing the synchronization and caching
aspects

When we deploy the aspects for synchronization (shown in listing
1) and caching (listing 4) within our original application (see figure
2), we observe that several shared join points occur, as most calls
to methods within class Document are advised by both aspects.
Therefore, we need to determine in what order these advices should
be executed.

As an example, we consider the join point that occurs when return-
ing from method wordCount. At this join point, a caching advice

thread 1 thread 2

call to addLine(..)
wait to enter critical section

enter critical section

cache.invalidate()
..

..
return from wordCount()

cache.setValue(retValue)

leave critical section
notify other threads

sync. 
advice

caching
advice

sync. 
advice

caching
advice

Figure 8. Using the correct advice ordering

will store the value that was returned by the method. The synchro-
nization advice leaves the critical section that was entered before
the method was executed, as shown in listing 3. In this case, the
caching advice –at the end of a method– should be executed before
the synchronization advice. This is illustrated in figure 8, whereas
figure 9 illustrates a specific scenario of two threads where –in both
cases– the synchronization advice precedes the caching advice. In
the latter case, a different thread executing a writer method may
invalidate the cache as soon as the critical section is left, while sub-
sequently the caching aspect stores an (already invalidated!) value
in the cache. In that case, the next call to wordCount would re-
turn a cached value that is incorrect. To generalize the example,

thread 1 thread 2

call to addLine(..)
wait to enter critical section

enter critical section

cache.invalidate()

..

..
return from wordCount()

leave critical section
notify other threads

cache.setValue(retValue)

sync. 
advice

caching
advice

sync. 
advice

caching
advice

Figure 9. Concurrent execution with incorrect advice ordering

we observe that any caching advice should occur within the criti-
cal sections as imposed by the synchronization advice. Specifically,
for advices executed at a shared MethodCalljoinpoint, the synchro-
nization advice should have precedence, while at a shared Method-
ReturnJoinpoint, the caching advice should have precedence. This
is an example of a language-level composition constraint.

4.3 The advice composition mechanism of JAMI

JAMI offers two complementary advice composition mechanisms.
First, it implements a generic ordering constraint mechanism as
proposed in [14]. At shared join points, constraints may limit which
advices are currently applicable. Such constraints may be condi-
tional, and may for example depend on which advices where al-
ready executed (at the same join point). Even so, the application
of constraints may still leave several advices eligible for execution.
Second, JAMI therefore supports a “scheduling” interface to deter-
mine the further selection of advice execution. Different strategies
can be implemented to disambiguate the selection of advice. Our

default implementation picks an arbitrary element from the set of
applicable bindings, and in addition prints a warning that the pro-
gram is potentially ambiguous. In addition, the scheduler can de-
cide to cancel further advice executions at a given join point, if
requested to do so by particular advice actions3.

Constraints are decoupled from the “aspect modules”, and are in-
stead kept as a separate set of entities within the aspect evalua-
tion framework. This enables the specification of constraints be-
tween selector-advice-bindings that are part of several aspects, or
that even originate from several aspect languages.

As discussed above, for our example we want to specify language-
level composition based on the originating language of each
selector-advice-binding. We do not need any program-level con-
straints, in this case. Therefore, we simply create constraints be-
tween all selector-advice-bindings, such that caching advices occur
within the critical section created by synchronization aspects (if
the advices apply at the same join point), and decorator advices get
even higher priority.

A functional implementation (in JAMI) that composes aspects writ-
ten in the two DSALs discussed in this paper – including the con-
straints as discussed in this section, is downloadable as part of the
example discussed throughout this paper [1].

5. Related work
In [13], Masuhara and Kiczales propose the Aspect Sand Box,
an interpreter framework to model aspect mechanisms. Using this
framework, the effects of aspects are defined in terms of weav-
ing semantics. The weaving process is modeled by extending or
modifying the interpreter of a base language that models a single-
inheritance OO language (which can be seen as a core subset of
Java). In comparison, JAMI defines a common runtime environ-
ment for aspects, which allows us to express explicit ordering con-
straints between advices, and enables the deployment of multiple
aspect languages within a single application. As discussed in sec-
tion 4, it would be harder to define a single weaver that models the
composition of multiple languages.

The AspectBench Compiler (abc) [2] is a workbench that – like
JAMI – facilitates experimentation with new (aspect) language
features. Unlike JAMI however, it focuses mainly on extensions
to AspectJ, and strives to provide an industrial-strength compiler
architecture that facilitates efficient implementations of extensions
to the AspectJ language. In contrast, while designing JAMI we
specifically tried to avoid design decisions that would limit the
flexibility of our framework. In addition, abc is not designed to
handle composition between multiple languages.

The work from Kojarski and Lorenz [9, 10] is strongly related to
ours; in particular, they also investigate the issue around the com-
position of multiple aspect languages. In [10], seven interaction pat-
terns among features of composed aspect languages are described.
Some of these, such as emergent advice ordering, are also discussed
in this paper. However, because (1) JAMI introduces its own set
of abstract features, such as selector-advice bindings, and (2) in
our interpreter-based approach, individual aspect languages are not
translated into base language terminology, hence, there is never
accidental interaction, not all interaction patterns are applicable.
However, the proposed analysis approach could also be applied in
the context of our work.

In [9], the AWESOME framework is described; instead of an
interpreter-based approach, this adopts a weaver-based approach,

3 This corresponds to the run-time detection and resolution of aspect inter-
actions in [17].
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that also addresses foreign advising, and language-level, but cur-
rently –according to [9]– not program level co-advising (which we
presented in section 4.3).

The Reflex AOP kernel [18, 17] is also closely related work; it is a
reflection-based kernel for AOP languages, with a specific focus on
the composition of aspect programs. To this extent, it provides an
(extensible) set of composition operators, which can be used when
translating an aspect specification to a representation in terms of
the kernel-level abstractions. Although there are many similarities
with JAMI, a key difference of the current implementation is that it
is weaving-based, rather than interpreter-based. Mostly due to this,
the support for foreign advising is limited (as e.g. exemplified in
[10]).

The XAspects project [16] implements a system to map DSALs to
AspectJ source code. The approach addresses the need to compose
aspects written in multiple DSAL, but does not provide explicit
mechanisms to deal with interactions between aspects, other than
suggesting the use of the AspectJ declare precedence construct.
Compared to this, JAMI offers more elaborate ways to specify the
composition of aspects.

In [3], Brichau et.al. propose the definition and composition of
DSALs (“Aspect-Specific Languages”) using Logic Metaprogram-
ming. Although their approach is not based on a typical OO frame-
work, it does allow the reuse and refinement of aspect languages. It
is based (in [3]) on static source code weaving (by method-level
wrapping). The composition of aspect languages (program level
composition is not supported) is achieved by explicit composition
of languages into new, combined languages. In our opinion, this is
less flexible, as it requires explicit composition for each configu-
ration of aspect DSALs that occur in an application, and the late
addition of a new aspect language in a system may not be possible
without restructuring the composition hierarchy.

6. Conclusion
In this paper, we have shown implementations of two domain-
specific aspect languages, using our aspect interpreter framework.
Using this framework, it took only 3-4 days (per language) to create
functional prototypes of these diverse DSALs. Aspects written
in these DSALs can be composed with regular Java programs at
runtime, in an interpreted style.

We have used JAMI in a programming language course to teach
the common aspect language concepts and various implementa-
tions thereof. As part of this course, students successfully devel-
oped small DSALs within limited allotted time. This supports our
claim that JAMI can be used to prototype DSALs while requir-
ing relatively little effort, even including the learning curve of the
framework itself.

We contribute the effectiveness of JAMI as a framework for pro-
totyping DSALs in large part to its flexibility and expressiveness.
For example, as aspects are completely dynamically evaluated, it
is easy to experiment with pointcuts that express complex selec-
tion criteria over the runtime state. In addition, our support for ”as-
pect state” using variables that each may have different instantia-
tion policies provides a flexible way to implement aspect language
features, while requiring relatively little effort.

We have shown that our framework supports applications com-
posed of aspects written in several DSALs. In addition, we have
discussed interactions that may occur when combining multiple
DSALs, and demonstrated mechanisms implemented as part of
JAMI to specify aspect composition – also of aspects written in
different languages. The framework as well as the examples shown
in this paper can be downloaded from the JAMI website [1].
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