
Towards a Domain-Specific Aspect Language for Leasing in
Mobile Ad hoc Networks

Elisa Gonzalez Boix ∗ Thomas Cleenewerk Jessie Dedecker Wolfgang De Meuter
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussels - Belgium

{egonzale,tcleenew,jededeck,wdmeuter}@vub.ac.be

Abstract
Leasing provides a robust mechanism to manage reclamation of re-
mote objects in mobile ad hoc networks. However, applying the
leasing semantics on each remote object reference places a consid-
erable burden on developers. Low-level leasing management de-
tails can be abstracted away as much as possible by means of ded-
icated language support. This paper focusses on the software en-
gineering issues that arise using language support for leasing. We
observe that the concerns dealing with leasing are inherently cross-
cutting and argue in favour of a modularization of such concerns in
an aspect. We propose a domain-specific aspect language (DSAL)
for leasing which provides dedicated means to express the leasing
concerns separately from the base functionality.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques

General Terms Languages, Design

Keywords mobile ad hoc networks, leasing, domain-specific lan-
guages, aspect-oriented programming

1. Introduction
In mobile ad hoc networks, distributed programming is substan-
tially complicated by the intermittent connectivity of the devices in
the network and the lack of any centralized coordination facility.
To deal with volatile connections, remote object references should
tolerate network disconnections: a disconnected remote reference
may always become reconnected when the network connection is
restored. Because it is impossible to distinguish a transient network
failure from a permanent (network or machine) failure, the life-
time of the remote object reference should be limited such that the
remote object can eventually be reclaimed if the network failure
persists.

Leasing provides a robust mechanism to manage reclamation
of remote objects in a fault-tolerant fashion [10]. A lease denotes

∗ Author funded by the Prospective Research for Brussels program of the
Brussels Hoofdstedelijk Gewest.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop DSAL’08 April 1, 2008, Brussels, Belgium.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

the right to access a resource for a limited amount of time. In a
distributed object-oriented system, remote object references play
the role of the lease and the objects they refer to play the role of
the resource. In other words, client objects from other machines
can reference remote objects by means of leased object references.
However, applying the leasing semantics on each remote object ref-
erence places a considerable burden on developers. Rather than of-
fering leased object references as a general library abstraction, we
have chosen a language approach such that low-level memory man-
agement concerns can be cleanly incorporated into more high-level
abstractions, decreasing the mental overhead for the developer. In
previous work, we have designed dedicated language support for
leasing [5].

This paper focusses on the software engineering issues that arise
using such language support for leasing. We observe that leased ob-
ject references are inherently crosscutting: developers must encode
the distributed memory management semantics (i.e. how long a
leased reference lasts and what happens once it is expired) at dif-
ferent places in the application. In this paper, we argue that con-
cerns dealing with leasing should be cleanly separated from the
functional code. Expressing the leasing semantics separately also
allows developers to define the same leasing semantics to groups
of objects which share certain properties and to express depen-
dencies amongst leased object references in a structured way. We
subsequently introduce a domain-specific aspect language (DSAL)
which provides dedicated means to express the leasing concerns by
encapsulating them as an aspect. Before describing the DSAL, we
first discuss the crosscutting nature of leased object references and
the domain specific semantics particular to leasing.

2. Background
To delimit the scope of our work, we first introduce some termino-
logy and concepts from the area of distributed object-oriented com-
puting. We assume an object-oriented system where objects can be
exported, which makes them available on the network. Objects can
either be exported explicitly, by means of a service discovery mech-
anism, or implicitly, by passing them as a parameter or return value
in a message sent to a remote object. We denote such remotely
accessible objects as server objects. Server objects can be refer-
enced from other machines by means of leased object references.
A leased object reference is a remote object reference that trans-
parently grants access to a remote server object for a limited period
of time. When a client first references a server object, a leased ob-
ject reference is created and associated to the server object. From
that moment on, the client accesses the server object transparently
via the leased reference until it expires. In [5], we instantiated such
leased object reference model in a distributed object-oriented pro-

gramming language designed for mobile ad hoc networks called
AmbientTalk [9]. The following sections briefly introduce Ambi-
entTalk and the concrete instantiation of our leasing model.

2.1 AmbientTalk in a Nutshell
AmbientTalk is a prototype object-oriented distributed language.
Consider the definition and use of a simple Song object in Ambi-
entTalk:

def Song := object: {
def artist := nil;
def title := nil;
def init(artist, title) {
self.artist := artist; self.title := title;

};
def play() { /* play the song */ };

};
def s := Song.new("Garbage", "Stupid Girl");

In this example, a song object is assigned to the variable Song.
A song object has two fields namely, a constructor (called init
in AmbientTalk) and a method play. Sending new to an object
creates a copy of that object, initialised using its init method.

AmbientTalk is a concurrent actor-based language [1]. Ambi-
entTalk actors are based on the communicating event loops model
[7] in which each actor is conceived as an event loop which owns a
set of regular objects. Objects owned by the same actor communi-
cate using sequential method invocation (expressed as o.m()) or
using asynchronous message passing (expressed as o<-m()). Ob-
jects owned by different actors can only send asynchronous mes-
sages to one another.

2.2 Language constructs for leasing in AmbientTalk
AmbientTalk provides three different language constructs1 for cre-
ating a basic leased object reference that expires after a certain
timeout and two variations which transparently adapt their lease
time under certain circumstances [4].

lease: timeout for: object
renewOnCallLease: timeout for: object
singleCallLease: timeout for: object

As shown above, a basic leased reference is created by means of
the lease function which takes as parameter an initial time period
and a server object to which the leased reference grants access. The
first variant is a renew-on-call leased reference that automatically
prolongs the lease upon each method call received by the remote
object. The second variant is a single-call leased reference that
automatically revokes the lease upon performing a method call on
the remote object. Such leases are useful for objects which adhere
to a single call pattern such as futures [6]. In AmbientTalk, an
asynchronous message send immediately returns a future which is
a placeholder for the actual return value. Once the return value is
computed, it replaces the future object; the future is then said to
be resolved with the value. A future actually acts as an implicit
callback object which is remotely accessed only once with the
computed return value.

3. Motivation
The main motivation for building a DSAL for leasing stems from
the analysis of using our previously described language constructs
in mobile ad hoc networking applications. Before arguing for leas-
ing as an aspect, we first introduce our running example and then
observe the crosscutting nature of the leasing concerns.

1 These constructs are executed at the server side which then hands out the
proper leased object reference to a client object.

3.1 Running example: the Mobile Music Player
We consider the case of the mobile music player [8], a small yet
typical collaborative ad hoc networking application, as our running
example. This application is meant to be used on the PDA or
the cellular phone of the user. A mobile music player contains a
library of songs. When two people using the music player enter
one another’s personal area network (defined for example by the
bluetooth communication range of their cellular phones), the music
players exchange their music library’s list. After the exchange, the
music player can calculate the percentage of songs both users have
in common. If this percentage exceeds a threshold, the music player
can e.g. warn the user that someone with a similar musical taste is
nearby.

In this application, each music player is modelled as an actor
which explicitly exports an interface object that can be used by
other music players to start a communication session to exchange
libraries by sending it the openSession message. The interface
object implements this message as follows:

1 def openSession(sessionCallback) {
2 // store sender’s music library in a set
3 def senderLib := Set.new();
4 def session := renewOnCallLease: minutes(10) for:

5 object: {
6 def downloadSong(artist, title) {
7 senderLib.add(Song.new(artist, title));
8 "ok"; //tell sender song was correctly received
9 };

10 def endExchange() {
11 revoke: session; //takes the session offline

12 // calculate match percentage with my library
13 def matchRatio := calcMatchRatio(senderLib);
14 if: (matchRatio >= THRESHOLD) then: {
15 // notify user of a match
16 };
17 };
18 };

19

when: session expired: {
//clean the downloaded library of songs

}
20 session; // return the session object
21 };

The openSession method asynchronously returns a new
session object that implements two methods: downloadSong
and endExchange which are used by a remote music player
to send song information and to signal the end of the library ex-
change, respectively. The session object is clearly only relevant
within the context of a single music library exchange. If – due to
a persistent network partition or a crash – the exchange cannot be
completed, this object and the resources it transitively keeps alive
should be eventually reclaimed. To this end, the session object
is exported using a lease for 10 minutes which is automatically re-
newed each time it receives a message. As long as the exchange is
active, i.e. downloadSong messages are received, the session re-
mains active. The leased reference is revoked either explicitly when
a client sends the endExchange message to indicate the end of
the library exchange, or implicitly if the lease time has elapsed.
Once a leased reference expires, the when-expired observers will
be triggered allowing client and server objects to properly react and
release additional resources. In this example, a session clears the
senderLib which stores the incoming songs.

3.2 Leasing as a Crosscutting Concern
The above code snippet illustrates a simple example of the usage of
a leased object reference. The crosscutting nature of leasing already
emerges when looking at only one single leased object reference.
The implementation of the session object is tangled with two

concerns: a set of statements that defines the core functionality of
the session object and a set of statements belonging to the leas-
ing concern applied to the session object. In fact, conceptually
the leasing concern encapsulates a number of sub-concerns: the es-
tablishment of the leased reference (line 4), its explicit revocation
(line 11) and how the expiration of the leased reference is handled
(lines 20-22). These sub-concerns are clearly scattered throughout
the implementation of the session object.

Leasing concerns not only crosscut a single object but also
groups of server objects sharing the same leasing semantics. As a
concrete example, consider again the case of futures. As previously
mentioned, a future acts as an implicit callback object which only
serves to process the reply of an asynchronous message send. A
future is thus implicitly exported in a message send to a client
object which holds the only remote reference to it. If this reply
does not arrive after some period of time, the future object should
become garbage. In our running example, a remote player starts the
exchange of their music library’s list by sending the asynchronous
openSession message as follows:

def openSessionFuture :=
remotePlayer<-openSession()@Due(minutes(10));

when: sessionFuture becomes: { |session|
// open session with remote player

} catch: TimeoutException using: { |e|
system.println("unable to set up session.");

}

The timeout for the implicit lease on the openSessionFutu-
re future object is set by means of the @Due(timeout) anno-
tation. The when:become:catch function registers two event
handlers with a future: the becomes closure is triggered when
the future is resolved and the catch closure is triggered with a
TimeoutException when the future’s lease expires due to a
timeout. Note that for each asynchronous message send returning
a value, the application code gets polluted with (1) the annotation
determining the timeout of the implicit lease on the future and (2) a
catch closure defining how to handle the expiration of such lease.
This clearly puts extra burden on developers which have to repeat-
edly encoded these two concerns along the entire application on
every future message send. Although the concrete timeout to apply
to a future may depend on the computational context of a message
send, futures conceptually form a group of server objects sharing
common leasing semantics: they either expire due to a timeout or
upon the reception of a resolve message with the return value.

The scattering of leasing concerns also obfuscates the depen-
dencies that exist among them. In our running example, once a
music player receives a session object, it will start the exchange
of songs by asynchronously sending downloadSong messages.
The sender waits for the acknowledgment of a song information
before sending the next one as follows:

def downloadSongFuture := session<-downloadSong(
song.artist,song.title)@Due(leaseTimeLeft: session);

when: downloadSongFuture becomes: { |ack|
// recursive call to send the rest of the songs

} catch: TimeOutException using: { |exception|
// stopping exchange with remote player

};

Note that the future object attached to the downloadSong
message sends can be discarded when either the acknowledgement
arrives or the session times out. Therefore the timeout period to use
should be derived from the session lease timeout, rather than pick-
ing an arbitrary timeout value. In order to properly encode these de-
pendencies it is better to express leasing concerns separately rather
than to have them scattered along the application.

3.3 Leasing as an Aspect
In the previous section, we observed that the usage of the lan-
guage constructs which form the leasing concern, is clearly scat-
tered along the application and tangled with the base functionality.
We advocate to separate leasing concerns from the application’s
functionality and modularize them into a separate unit. Treating
leasing concerns separately has the following advantages:

• The leasing concern is actually a complex concern which can be
conceptually subdivided in a number of sub-concerns. Bringing
them together in a single module allows developers to keep
track of the life cycle of the leased object references.

• Leasing mechanisms are typically applied in a per-object ba-
sis. Expressing leasing concerns separately allows developers
to reuse leasing semantics shared amongst a group of server ob-
jects and to better modularize the application of recursive leas-
ing patterns.

• Dependencies between leasing concerns can be explicitly ex-
pressed in one module improving the readability of the code.

• Leasing concerns may evolve independently from the base
functionality. For example, self-adaptive leasing algorithms
have been proposed to dynamically vary lease periods in re-
sponse to the system size [2]. Leasing semantics can be altered
depending on hardware characteristics such as network latency.
Expressing leasing concerns in a separate module allows devel-
opers to deal with unanticipated changes on the leasing seman-
tics without having to adapt the entire application.

We believe that using aspects, the scattering of the definition
of leased object references can be cleanly captured in a pointcut
description. Aspects have been successfully applied to the memory
management concerns at the level of the implementation of a virtual
machine [3]. We propose the usage of aspects for distributed mem-
ory management concerns (i.e. leasing) at a programming language
level. The basic idea is to grow our current language constructs into
a domain-specific aspect language (DSAL) which encapsulates the
leasing concerns in one module improving conciseness and read-
ability of the code implementing the base functionality.

There are several reasons for proposing a DSAL rather than opt-
ing for a general purpose aspect language. First, all the semantics
involved with leasing concerns are specific to the domain of mem-
ory management for remote references. Leasing concerns affect the
process of establishing a leased reference, managing its life cycle
and reacting to its expiration. Secondly, our language targets Am-
bientTalk applications: developers can express the memory man-
agement semantics of remote object references used in the base
application. The language is a domain-specific language for dis-
tributed programming which employs an event-driven concurrency
model. As such, an aspect language on AmbientTalk needs also to
take into account several domain-specific concepts such as asyn-
chronous communications and ambient acquaintance management
(i.e. the discovery and management of proximate devices and their
hosted services).

Based on our expertise in distributed programming languages
for mobile ad hoc networking applications and the usage analysis
of our language constructs for leasing, we describe a number of
characteristics that a domain-specific language for leasing should
support:

• The DSAL should allow developers to specify the leasing se-
mantics concerning the management of the full life cycle of
leased object references in a separate module. The management
of leased object references should be open enough to make pos-
sible the definition of other actions than the standard renewals
or revocations of leases.

• It should also provide means to define reusable leasing seman-
tics which can be applied to a group of server objects.

• Dependencies between leasing concerns should be explicitly
expressed.

• Due to the event-driven nature of mobile ad hoc networks, Am-
bientTalk adheres to a set of well-defined characteristics such as
asynchronous communications and ambient acquaintance man-
agement. These characteristics (which are described in [9]) re-
sulted in an event-driven programming language. This event-
driven nature should be reflected in the join point model.

4. A DSAL for Leasing
This section proposes a DSAL for leasing. Our language declares
the leasing semantics of a number of server objects. A leasing as-
pect encapsulates the leasing sub-concerns previously identified,
i.e. the semantics of the leased object reference and the manage-
ment of its life cycle since it gets established until its expiration, in
a single module.

Aspects An aspect is a special kind of object which expresses
leasing concerns on the base functionality. It consists of a point-
cut which identifies the objects that will be passed with a certain
leasing semantics and a set of advices managing the established
leased references. Such advices can be sub-divided in two cate-
gories: default advices that control the creation and expiration of
the lease, and custom advices which express other actions on the
lease, e.g. revocation or renewal of the lease. The following code
excerpt shows the definition of the aspect corresponding to the
leased object reference for the session object introduced in the
previous section.

1 def leasedSession := aspect: {
2 //pointcut definition
3 capture: pass as: ‘session
4 and: { session.isTaggedAs(‘sessionType) };
5 //default advices
6 on: referencing do: {
7 RenewalOnCallLease.new(minutes(10));
8 };
9 on: expired do: {

10 system.println("session " +remoteUser+ " expired");
11 senderLib.empty();
12 };
13 //custom advice
14 on: session.receive(msg)
15 and: {msg.methodName==‘endExchange} do: {revoke()};
16 }

The above code defines an aspect by means of the aspect:
construct and subsequently binds it to a local variable named
leasedSession.

Pointcut Descriptors The pointcut of a leasing aspect is defined
by means of the capture: function which takes as parameter an
event to be observed. In this example, capture: observes the pass
event which is triggered by the interpreter when an object is seri-
alized (and becomes remotely accessible). Other events can be ob-
served in the pointcut definition such as the discovery of a remote
object. This allows developers to establish a leased reference when
a server object is explicitly published via the service discovery.

The pass event returns an object which can be bound to a
local variable by means of the as: construct. Additional conditions
can be applied to a bound session object by means of the and:
construct, e.g. in the above example whether the object is tagged
with the sessionType type tag.

Advices Following the pointcut definition, a set of advices de-
fines the management of the lease life cycle. They are expressed by

means of the on:do: construct, which takes as parameter an event
and the action to execute. referencing and expired are two default
events that every leased reference exhibits. They reify how to han-
dle resp. the creation and expiration of a leased object reference.
Each leasing aspect can also provide custom default events. The
advice on referencing establishes the type of the leased object refer-
ence, e.g, a renew-on-call lease while the advice on expired clears
the senderLib as previously explained 2. Lines 14-16 define a
custom advice which triggers the explicit revocation of the leased
reference upon the reception of the endExchange message.

Note that our DSAL can only issue two actions that modify the
state of a leased object reference: a revoke (applied by means of the
revoke() function as shown in line 16) and a renewal (applied by
means of the renewal(timeout) function). Further research
about changes of state of a leased reference is required.

4.1 Applying the DSAL to the running example
We described the syntax and semantics of our DSAL for leasing by
means of the leasedSession aspect. Although the introduction
of this aspect makes possible to factor out the lines of code for
the identified three sub-concerns from the base code, this aspect is
specific to the session object. The leasing semantics of futures
are a more general and complex concern to modularise. The code
excerpt below illustrates how a reusable leasing aspect for futures
could look like:

def future := aspect: {
capture: send as: ‘msg
and: { msg.isTaggedAs(‘FutureMessage) };

def timeout;
def init(aTimeout) { timeout := aTimeout };
on: referencing do: { SingleCallLease.new(timeout)}

}

As previously explained, all future objects share the follow-
ing leasing semantics: they expire due to a timeout or upon the
reception of a single message (either a resolve or ruin mes-
sage). Therefore, the advice on referencing establishes a single-call
leased reference. Note that the concrete timeout to apply to a future
object may depend on the computational context of the message
send. To this end, the future aspect defines a custom constructor
which initialises the timeout field. In the context of our run-
ning example, the following aspect defines the future attached to
the downloadSong messages.

def downloadSongFuture := extend: future with: {
capture: super.capture
and: { msg.getMethodName().equals(‘downloadSong)};

def init() {
super.init(msg.getReceiver().getLeaseCounter()) };

on: expired do: { //stop the exchange }
}

In the example, the downloadSongFuture extends the leas-
ing semantics of the future aspect by means of the extend:with:
function which creates a new aspect (object) whose super slot is
automatically set to the given parent. As such, the pointcut defini-
tion of the downloadSongFuture aspect uses its parent point-
cut definition (accessed by means of the super variable) and adds
an extra constraint, i.e. the message send name.

As said in 3.2, the future objects attached to each download-
Song message send can be discarded when either the acknowl-
edgement arrives or the session times out. In order to express this

2 We assume that the aspect is in the scope of the definition of the session
object and it can thus see the senderLib variable.

dependency, the downloadSongFuture initializes the time-
out field with the lease counter specified in the session object to
which the downloadSongmessage is sent. The downloadSong-
Future aspect defines how to handle the expiration of the lease
since this may depend on a particular sequence of message sends.
Note that the downloadSongFuture aspect is applied to a sin-
gle message send, but future aspects could as well be applied to a
group of asynchronous message sends, for example different mes-
sages involved in a database transaction.

5. Summary
This paper observes the crosscutting nature of the leasing concerns
and gives several reasons why techniques for separation of con-
cerns are a good candidate to implement dedicated language sup-
port for leasing. We take a language-oriented approach and advo-
cate to express leasing concerns as a special domain of aspects us-
ing a DSAL. It simplifies the definition of the leasing semantics
and the description of relationships between leasing concerns by
encapsulating them into a separate module. This also allows devel-
opers to deal with unanticipated changes on the leasing semantics
without adapting the entire application.

We are currently designing the DSAL described in this paper
as an extension of the meta-object protocol of AmbientTalk. At a
conceptual level, a number of challenging issues need also to be
thoroughly explored such as how to access base variable definitions
within the aspect or how to deal with the addition of new types of
events that are not present yet in the system.

References
[1] AGHA, G. Actors: a Model of Concurrent Computation in Distributed

Systems. MIT Press, 1986.

[2] BOWERS, K., MILLS, K., AND ROSE, S. Self-adaptive leasing for
jini. In Inter. Conf. on Pervasive Computing and Communications
(PERCOM) (2003), IEEE Computer Society, pp. 539–542.

[3] GIBBS, C., AND COADY, Y. Aspects of memory management. In
Proceedings of the 38th Annual Hawaii International Conference on
System Sciences (HICSS) (2005), IEEE Computer Society, p. 275.2.

[4] GONZALEZ BOIX, E., VALLEJOS VARGAS, J., VAN CUTSEM, T.,
DEDECKER, J., AND DE MEUTER, W. Context-aware leasing for
mobile ad hoc networks. In 3rd workshop on OT4AmI co-located at
ECOOP (2007).

[5] GONZALEZ BOIX, E., VAN CUTSEM, T., DEDECKER, J., AND
DE MEUTER, W. Language support for leasing in mobile ad hoc
networks. Tech. Rep. 07-08, PROG, VUB, 2007.

[6] HALSTEAD, JR., R. H. Multilisp: a language for concurrent symbolic
computation. ACM Trans. Program. Lang. Syst. 7, 4 (1985), 501–538.

[7] MILLER, M., TRIBBLE, E. D., AND SHAPIRO, J. Concurrency
among strangers: Programming in E as plan coordination. In Symp.
on Trustworthy Global Computing (2005), Springer, pp. 195–229.

[8] VAN CUTSEM, T., DEDECKER, J., AND MEUTER, W. D. Object-
oriented coordination in mobile ad hoc networks. In 9th International
Conference on Coordination Models and Languages (COORDINA-
TION) (2007), vol. 4467 of LNCS, Springer-Verlag, pp. 231–248.

[9] VAN CUTSEM, T., MOSTINCKX, S., ELISA GONZALEZ BOIX,
DEDECKER, J., AND DE MEUTER, W. Ambienttalk: object-oriented
event-driven programming in mobile ad hoc networks. In XXVI
International Conference of the Chilean Computer Science Society
(SCCC) (2007), IEEE Computer Society.

[10] WALDO, J. Constructing ad hoc networks. In IEEE Inter. Symposium
on Network Computing and Applications (NCA) (2001), p. 9.

