
ERTSAL: A Prototype of a Domain-Specific Aspect Language for
Analysis of Embedded Real-Time Systems

William Sousan
Technical Support Inc.

wsousan@mail.unomaha.edu

Victor Winter, Mansour Zand, Harvey Siy
University of Nebraska at Omaha/University of

Nebraska at Omaha/University of Nebraska at Omaha
{vwinter, mzand, hsiy }@mail.unomaha.edu

Abstract
A primary characteristic of Embedded Real-Time Systems (ERTS)
is the fact that they are resource constrained. Such constraints
present unique challenges to the embedded systems programmer
who must develop software satisfying a given set of functional
requirements while simultaneously addressing the limitations of
available resources and dependability concerns.

This paper describes ERTSAL – a domain-specific aspect lan-
guage suitable for use by embedded systems software developers
that is comprised of domain specific instructions for use in the mon-
itoring, evaluating, and debugging of ERTS. ERTSAL abstractions
shield developers from the intricacies of AspectC++ and the idio-
syncrasies of an underlying RTOS. The semantics of ERTSAL is
defined in terms of AspectC++. ERTSAL aspects are automatically
transformed to corresponding AspectC++ aspects using the trans-
formation system HATS.

Categories and Subject DescriptorsD.2.3 [Software Engineer-
ing]: Coding Tools and Techniques

General Terms Performance, Design, and Reliability

Keywords ERTSAL, Domain-Specific Aspect Language, Pro-
gram Transformation, HATS,Embedded Real-Time Systems

1. INTRODUCTION
The embedded system market represents the dominant applica-
tion domain for microprocessors. Of the eight billion microproces-
sors manufactured in 2000, 98% went into embedded systems [9].
Presently, embedded systems span a broad spectrum of applica-
tions ranging from anti-lock braking systems, flight control sys-
tems, medical systems, as well as numerous household appliances.

The hardware used in embedded systems is typically heavily
constrained. Economic forces demand that the most economical
hardware configuration be developed. Beyond this, physical limi-
tations place strict bounds on various hardware attributes such as
volume, weight, and power usage. As a result, the computational
capabilities of hardware found in embedded systems are typically
task specific and narrowly focused. In other words, embedded sys-
tems hardware typically do not provide the type of general purpose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DSAL ’07 March 12, 2007 Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM 978-1-59593-659-8. . . $5.00

computing capabilities found on a PC. The software development
cost function is further amplified by strenuous dependability con-
straints that oftentimes accompany embedded applications.

Aspect-Oriented Software Development (AOSD) [5], which is
based on the separation of cross-cutting concerns in order to re-
move tangled and scattered code into their own components, has
shown to be helpful in the development of embedded real time sys-
tems (ERTS). Some examples of this are in the use of AOSD in
embedded databases [12], Operating Systems [9], and Real-Time
Component Modeling [1]. All these systems make use of a general
programming language (GPL) that is enhanced for AOSD. Lan-
guages such as AspectJ [8] and AspectC++ [11] are examples of
GPL’s that are modified to include support for aspect definition and
weaving. However, these languages lack support for domain spe-
cific features of the problem domain. This presents the need for
a Domain-Specific Aspect Language (DSAL) [10] which can help
encapsulate the characteristics unique to a particulcar problem do-
main. Specifically, a DSAL that focuses on the ERTS development
domain could help improve the development phase by offering the
ability to monitor power consumption, execution time, memory us-
age, error handling, and reliability.

In this paper we introduce a prototype language, known as ERT-
SAL, which is a domain-specific aspect language for the devel-
opment of ERTS. As of this writing, we believe our DSAL to
be the first of its kind to be used for ERTS development during
the implementation phase. Other systems such as VEST [7], are
used for Real-Time systems during the design phase. The ERT-
SAL language provides domain specific aspects for ERTS that are
expressed in less lines of code as compared to their AspectC++
counterparts. In addition, the ERTSAL instructions are easier to
understand and are customized for the monitoring, evaluating, and
debugging of ERTS.

The remainder of this paper is as follows: Section 2 explains
the steps leading towards the development of a DSAL for ERTS
along with the tools and methodologies for its development. Sec-
tion 3haks summarizes the syntax and semantics of ERTSAL as
well as its implementation. Section 4 describes the results of us-
ing ERTSAL aspects to monitor and constrain embedded system
software. Section 5 discusses areas of future work, and Section 6
concludes.

2. Background Research
The research was initiated by reviewing the difficulties of ERTS
development by evaluating a wide spectrum of embedded sys-
tems with varying degrees of constrained resources. This included
high-end distributed Real-Time systems all the way down to small
deeply-embedded systems that are extremely resource constrained.
By doing so, it allowed for the characterization of the challenges

that are unique to ERTS development as well as the research meth-
ods for solving those challenges

The development of ERTSAL is motivated by three goals: The
first goal concerns itself with the identification of a set of domain
specific cross-cutting concernsSA central to ERTS software de-
velopment. The second goal is to provide a language (i.e., ERT-
SAL) in which the cross-cutting concerns inSA can be described
in a straightforward fashion. The third goal concerns itself with
developing an infrastructure in which ERTSAL programs can be
incorporated into the ERTS development process. General purpose
aspect oriented languages such as AspectC [4], AspectC++, and
AspectJ with Real Time extensions can address the third develop-
ment goal, but do not inherently address our first and second goals.
This suggests that a general purpose aspect oriented language could
be used as a back-end of an ERTSAL prototype. This observation
has led to the development of an architecture in which AspectC++
serves as the general purpose aspect oriented language compris-
ing the back-end of ERTSAL. AspectC++ was chosen because it
seemed best suited to ERTS development due to its availability and
low overhead. After the selection of AspectC++, we reviewed sev-
eral case studies describing how aspects are used with embedded
systems such as with RTOS configuration [9], WCET analysis [1],
database configurations [12] and others. In order to address the
first two development goals of ERTSAL, the advantages of Domain
Specific Languages were examined with the goal of integrating do-
main specific ERTS concepts into the aspect oriented idiom. We
analyzed a select group of DSAL’s [3], [13], [6], that appeared to
have beneficial features and characteristics for ERTS development.
This provided a foundation to proceed with a prototype DSAL tai-
lored for ERTS.

3. Prototype System
We have developed a prototype DSAL called ERTSAL in which
the benefits of a DSAL for ERTS can be evaluated. This system
allows us to analyze the lines of code savings and expressiveness
of the language as compared to general purpose programming lan-
guages with aspect extensions. Since the focus of the research is
more on the development of the actual domain specific language,
AspectC++ is used for defining the aspects and weaving to avoid
the overhead of creating a new aspectual language. By doing so, it
limits the work to defining the DSAL and developing a compiler,
which is preprocessor based, that converts the DSAL code to As-
pectC++ code and then finally to ANSI C++ that can be compiled
with a standard C++ compiler. To summarize, the front end of the
prototype consists of a BNF grammar describing ERTSAL together
with an ERTSAL-to-C++ compiler. The back end of ERTSAL is
provided by AspectC++. Our prototype provides a translator from
the ERTSAL syntax to a corresponding implementation.

ERTSAL aims to provide C++ software developers with a set
of abstractions appropriate for expressing a variety of cross-cutting
concerns central to embedded real time systems. The abstractions
provided shield the developer (to some extent) from the intricacies
of AspectC++ and the idiosyncrasies of the underlying real time
operating system. ERTSAL encompasses the majority of the point-
cut language (e.g., all forms of wildcard symbols and algebraic op-
erators) of AspectC++ [11]. ERTSAL aspects are categorized by
the type of their behavior (monitor or constrain) and by the type
of their concern (dependability or RTOS). Aspects whose behav-
ior is of typemonitor are used to formulate crosscutting concerns
that monitor specific behavioral quantities and report results. Re-
porting is accomplished using the built-in ERTSAL operatorLOG .
Aspects whose behavior are of typeconstrain are used to formulate
crosscutting concerns that alter the behavior of program execution.
In its present form, ERTSAL is probably best classified as a library
of domain specific aspects. Aspects belonging to this library can be

viewed as function-like entities whose formal parameters include
pointcuts and whose syntax has a command-line flavor. Concrete
examples of ERTSAL aspects are given in Table 1.

Presently, the transformation from ERTSAL to AspectC++ is
accomplished in a single rewriting step. That is, no intermediate
forms are generated during the transformational process. The trans-
formation from ERTSAL to AspectC++ is performed using the
transformation system HATS [14]. Figure 1 shows the system build
process that should be followed to produce an executable program.

Aspect
Definitions
Aspects in
Aspect++

Prog.ah

ac++
Aspect
Weaver

Standard
C++ Code

Inserted
Aspects

Prog.cpp

Aspect
Definitions

Aspects
and advice

Prog.ah

g++
Linux
Tools

Final
Program

ERTSAL
Compiler

Standard
C++ Code

(Base
Code)

Prog.cpp

ERTSAL
File

Prog.ert

RTOS
Plug-in

Figure 1. ERTSAL Build Process

Note that a framework is provided in conjunction with the ERT-
SAL compiler to create an RTOS independent system. This frame-
work provides for RTOS plug-ins that allow for the specification
of an interface file which describes mappings from the ERTSAL
RTOS functions to their corresponding RTOS specific functions.
By doing so, the ERTSAL compiler can be used with any RTOS
that can provide an interface file describing its function mappings
to the corresponding ERTSAL compiler functions. In addition, the
interface file also supports an option for defining the type of com-
munication channel used for reporting the output generated from
the ERTSAL instructions. This allows for any of the common com-
munication channels to be used such as serial, parallel, USB, or
Ethernet.

4. Evaluation
In order to evaluate the effectiveness of ERTSAL, a test program
was created that included enough functions and methods so that
each of the ERTSAL commands could be exercised. Likewise, an
ERTSAL file that contained a line for each possible aspect was
written so that each instruction could be tested. Next both files
were put through the build system in order to create the final
executable. Finally, the executable was run on the target system
and the evaluation continued with verification of the ERTSAL
commands. Note that a few iterations of this process were required
so that the base and aspect code could be modified enough times
in order to verify the operation of each ERTSAL command. In its
current form, the main advantage of ERTSAL is that it allows for
the specification of aspects that are domain specific to the ERTS
domain. This facilitates the ease of defining domain specific aspects
that otherwise have to be defined by a general purpose language
that requires more lines of code. Table 2 highlights the amount of
the code savings by showing the lines of code in AspectC++ that
are needed for selected ERTSAL instructions. Figure 2 displays
the corresponding AspectC++ code that is used to implement the
cpu time aspect.

There are restrictions in the tools ability to indicate overloaded
functions. For example, if the function specified in a target function
parameter belongs to a group of overloaded functions, the corre-

monitor cpu time (2000) execution(“% C::TimeTest(...)”);
This aspect monitors the amount of time a function takes to execute. The parameter (2000) denotes the maximum time, in microseconds,
allowed for the execution of functions matching the pointcut “% C::TimeTest(...)”.
monitor intra cpu time (2000) execution(“% C::IntraTimeTest(...)”);
This aspect monitors the amount of time that passes between sequential occurrences of function executions matching the pointcut
execution(“% C::IntraTimeTest(...)”). The parameter (2000) denotes the maximum allowable time, in microseconds, between sequential
occurrences of the selected function executions. If this threshold is exceeded an error will be logged.
monitor power level (75) execution(“% MinPwrClass::%(...)”);
This aspect monitors the power level of the system. The parameter (75) is a threshold denoting a power level percentage. For every join
point matching execution(“% MinPwrClass::%(...)”) the system power is checked. If the available power drops below the threshold (i.e.,
75%) an error will be logged.
monitor power level LOG execution(“% PwrClass::%(...)”);
This aspect monitors and reports the power level of the system for every join point matching execution(“% PwrClass::%(...)”).
monitor memory usage LOG call(“% C::MemoryWatch(...)”);
This aspect monitors and reports the memory usage of the system for every join point matching call(“% C::MemoryWatch(...)”).
monitor object count LOG construction(“C”) | | destruction(“C”);
This aspect monitors the construction/destruction of join points respectively matching construction(“C”) and destruction(“C”). A global
count is maintained of the number of these objects in existence and is reported whenever a join point matches construction(“C”)| |
destruction(“C”). At present, the object count can be monitored for only one class per execution.
constrain return time (-1, 3000) execution(“int C::TRTest(...)”);
This aspect constrains the execution of every method whose jointpoint matches execution(“% C::TRTest(...)”). In this example after the
target program has executed for more than 3000 microseconds, the execution of all methods matching execution(“int C::TRTest(...)”)
will return the value -1.
monitor joinpoint LOG call(“% C::TraceMe(...)”);
This aspect monitors and reports calls to methods whose join points match the pointcut call(“% C::TraceMe(...)”).
monitor null ptr LOG call(“% C::PointerTest1(...)”);
This aspect monitors the actual parameters that are passed to every method whose join point matches the pointcut call(“%
C::PointerTest1(...)”). For every actual parameter whose value is NULL and error report is logged.

Table 1. ERTSAL Commands

ERTSAL Concern LoC eLoC
in AspectC++ in AspectC++

cpu time 12 6
intra cpu time 17 9
memoryusage 7 3
joinpoint 7 3
object count 18 10
return time 11 5
null ptr 21 11

Table 2. Lines of Code Comparison between ERTSAL and As-
pectC++

sponding ERTSAL instruction will be applied to the entire group
of overloaded functions. Presently there is no means to select an
individual function from a group of overloaded functions.

5. Future Work
In the present version of ERTSAL, the developer is provided with a
fixed set of pre-defined aspects that are parameterized on pointcuts,
thresholds, and reporting logs. We are currently expanding ERT-
SAL to allow developers more flexibility with regard to the defin-
ition of aspects. The goal is to extend ERTSAL in a manner that
remains mindful of and consistent with the principles underlying
domain specific languages.

Another area of interest is providing support for the compre-
hension of the interaction between ERTSAL aspects and the target
C++ application. Presently there is no support with the ERTSAL
system for indicating which aspects have been applied to which
methods/classes. An aspect viewer allowing for a visualization of

constrain cputime (2000) execution(“%Cbclass::TimeTest(...)”);
⇒
aspect MaxCPUTime2
{

advice execution (“%Cbclass::TimeTest(...)”) : around()
{

long starttime = getelapsedmicrosecs();
tjp - > proceed();
if ((get elapsedmicrosecs() - starttime)> 2000)
{

output(“Timeout> Method-Function Called: %s\n”,
JoinPoint::signature());

}
}

} ;

Figure 2. ERTSAL cputime to AspectC++ translation

the links between the aspects and their corresponding join points
would be helpful in this regard.

6. Conclusion
The contribution of this research is a new DSAL that is tailored for
ERTS development. It provides customized aspects that are domain
specific to ERTS development for the use of monitoring, evaluat-
ing, and developing ERTS. In addition, it simplifies the process of
defining domain specific aspects by providing them in the form of
instructions within a DSAL. This allows for the reduction of aspect
definitions and thus less code is needed to describe these aspects.
Note that reducing code also helps in minimizing the chances of
error as well as requires fewer lines to write or understand, and,
according to Boehm’s [2] maintenance cost prediction model, low-

ers the maintenance costs. In addition, the ERTSAL language is
easier to read in comparison to its non-DSAL version. In conclu-
sion, our vision is to add more domain specific instructions and
enhancements to grow this new language for commercial use of
ERTS development.

References
[1] D. N. C. N. A. Tesanovic, J. Hansson and P. Uhlin. Aspect-Level

WCET Analyzer: a Tool for Automated WCET Analysis of a Real-
Time Software Composed Using Aspects and Components. In3rd
International Workshop on Worst-Case Execution Time Analysis
(WCET 2003) in connection with 16th IEEE Euromicro Conference
on Real-Time Systems (ECRTS04), Porto, July 2003.

[2] B. Boehm.Software Engineering Economics. Prentice-Hall, 1981.

[3] M. Bruntink, A. van Deursen, and T. Tourwé. Isolating idiomatic
crosscutting concerns. InProceedings International Conference on
Software Maintenance (ICSM 2005), pages 37–46. IEEE Computer
Society, 2005.

[4] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to
Improve the Modularity of Path-Specific Customization in Operating
System Code. InJoint European Software Engineering Conference
(ESEC) and9th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-9), pages 88–98. ACM
Press, 2001.

[5] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming:
Introduction.Commun. ACM, 44(10):29–32, 2001.

[6] P. Fradet and M. Suedholt. An Aspect Language for Robust
Programming. InAOPWorkshop at ECOOP ’99, 1999.

[7] R. P. C. Z. Y. M. H. J. Stankovic, R. Zhu and B. Ellis. Vest: An
aspect-based composition tool for real-time systems. InIEEE Real
Time Technology and Applications Symposium, pages 58–69, May
2003.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting Started with ASPECTJ.Commun. ACM,
44(10):59–65, 2001.

[9] D. Lohmann, W. Schr̈oder-Preikschat, and O. Spinczyk. On the
Design and Development of a Customizable Embedded Operating
System. InProceedings of the International Workshop on Dependable
Embedded Systems, 23rd Symposium on Reliable Distributed Systems
(SRDS 2004), October 2004.

[10] K. Mehner and A. Wagner. An Assessment of Aspect Language
Design. InPosition Paper Young Researcher Workshop, GCSE’99.,
1999.

[11] O. Spinczyk, D. Lohmann, and M. Urban. AspectC++: an AOP
Extension for C++ .Software Developer’s Journal, pages 68–76,
May 2005.

[12] A. Tesanovic, K. Sheng, and J. Hansson. Application-Tailored
Database Systems: a Case of Aspects in an Embedded Database.
In Proceedings of the 8th IEEE International Database Engineering
and Applications Symposium (IDEAS’04), IEEE Computer Society,
July 2004.

[13] Y. Usui and S. Chiba. Bugdel: An Aspect-Oriented Debugging
System. InSoftware Engineering Conference, 2005. APSEC ’05.
12th, pages 790–795, Dec 2005.

[14] V. Winter and J. Beranek. Program Transformation Using HATS
1.84. InGenerative and Transformational Techniques in Software
Engineering (GTTSE), volume 4143 ofLNCS, 2006.

