
A Distribution Definition Language for the Automated
Distribution of Java Objects

Paul Soule Tom Carnduff Stuart Lewis
Faculty of Advanced Technology

University of Glamorgan
Pontypridd Wales
U.K. CF37 1DL

{psoule,tcarnduf,sflewis}@glam.ac.uk

Abstract
Distributed applications are difficult to write. Programmers need
to adhere to specific distributed systems programming conventions
and frameworks, which makes distributed systems development
complex and error prone and ties the resultant application to the
distributed system because the applications code is tangled with
the crosscutting concern distribution.

We introduce a simple high level domain specific aspect lan-
guage we call a Distribution Definition Language (DDL), which
describes the classes and methods of an existing application that
are to be made remote, the distributed system to use to make them
remote, and the recovery mechanism to use in the event of a re-
mote error. The DDL is used by the RemoteJ compiler / generator
to generate the distributed system specific code and apply it to com-
ponents using bytecode manipulation techniques.

We describe the language and its features and show that a dis-
tribution definition language can be used to significantly simplify
distributed systems development and improve software reuse.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, compilers

General Terms Languages, Experimentation.

Keywords Distributed systems, RemoteJ, domain specific aspect
languages, aspect-oriented programming, code generation.

1. Introduction
Existing mainstream programming languages, such as Java, do not
provide language support for distribution. Rather, programmers
must rely on object-oriented distribution frameworks, such as RMI
and Jini, to provide distribution support. Although highly success-
ful, the cost of using these frameworks is that the resultant code is
tied to the framework. Object-oriented frameworks in general, and
distribution frameworks in particular, can therefore be considered
crosscutting in nature because the frameworks code, either via in-
heritance or containment, is scattered throughout the applications
code thereby tying the application to the framework.

This is a particular concern in distributed systems because dis-
tribution frameworks impose a large code overhead due to the re-
quirements distributed systems impose, such as the need to catch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop DSAL ’07 March 12, 2007 Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM 978-1-59593-659-8. . . $5.00

distribution specific exceptions, locating and binding to distributed
objects, locating another server in the event the current server be-
comes unavailable, and adhering to programming conventions dic-
tated by the framework, such as implementing framework spe-
cific interfaces. Consequently, developing distributed applications
is complex and error prone and results in application components
tied to the distribution framework, which cannot be easily reused
outside the application. Distribution is therefore considered a cross-
cutting concern and consequently a prime candidate for an aspect-
oriented [7] approach.

Several attempts have been made to apply distribution aspects to
existing Java code. These attempts typically target a single distribu-
tion protocol, RMI, and either generate AspectJ [6] code [1, 12, 16],
use a domain specific language [8, 9], extend Java [11], or extend
the AspectJ language to provide distribution [10]. While RMI is
the most widely used distribution protocol in Java systems and
is used as the protocol for Enterprise JavaBeans (EJB), Jini and
JavaSpaces, there are a number of other distributed systems, such
as CORBA, JMS, SOAP, HTTP, Java sockets etc. that Java pro-
grammers may choose to use and indeed may have to use to solve
a particular integration problem. Developers therefore have a large
choice of protocols, each with its own framework and possibly dif-
ferent programming convention. This significantly complicates dis-
tributed systems development.

We introduce the concept of a distribution definition language,
a simple high level domain specific aspect language, which gen-
eralises distributed systems development by describing the classes
and methods to be made remote, the distributed protocol to use
to make them remote, and the method used to recover from a re-
mote error. The DDL is used by the RemoteJ compiler / genera-
tor, which uses bytecode manipulation and generation techniques
to provide a distributed version of the application while retaining
existing classes for reuse in other distributed or non-distributed ap-
plications.

By generalising and modularising the distribution concern, the
use of a DDL provides a method of developing distributed applica-
tions that is significantly simplified, allows multiple protocols to be
supported for the same code base, and allows the same code to be
used in both a distributed and non-distributed application thereby
improving software reuse.

2. RemoteJ
RemoteJ is a compiler / generator that is used to apply distribution
to existing Java components using instructions contained in a dis-
tribution definition language format file. The salient features of the
RemoteJ system are:

• A Distribution Definition Language used to describe the classes
and methods to be made remote, the protocol to use to make
them remote, and the strategy used to recover from remote
errors.

• A recursive descent parser used to parse and validate the DDL.
• A code generator used to generate generic distribution and

recovery code.
• A protocol abstraction used as the basis for one or more plug-

gable protocol generators.
• One or more protocol implementations used to generate distri-

bution specific code.
• A bytecode rewriter to alter existing bytecode in a non-destructive

way.

.class RemoteJ
Compiler

DDL

Original bytecode

.class

.class

Original bytecode

Altered bytecode

ByteCode
Rewriting

Protocol A
Generator

Protocol B
Generator

Protocol ...
Generator

Protocol
Generator

Figure 1. System Overview

The DDL is read by the RemoteJ compiler / generator, which al-
ters the bytecode for the classes and methods described in the DDL
and writes the altered bytecode to a directory structure stipulated
by the DDL’s service statement thereby ensuring that the original
bytecode remains unaltered.

2.1 The Distribution Definition Language
The DDL is a simple language, based on a Java-like syntax, used to
describe classes and their methods to be made remote, the protocol
to be used, and the action to take in the event of an error. The
DDL is designed to support any number of protocols and recovery
strategies in the same source file thereby allowing a single source
file to be used to apply distribution to any number of class files from
the same source file. The RemoteJ DDL language is illustrated in
EBNF format in Figure 4 and a simple DDL sample is illustrated
in Figure 2, which will be used as the basis for this discussion.

2.1.1 Comments
Comments in the DDL are the same as for the Java language.

end of line
Line comments start with // and end at the end of the line

multi line
Multi line comments start with /* and end with */

2.1.2 Keywords
The DDL reserves the following keywords, which therefore
cannot be used as identifiers.

import uk . ac . glam . ∗ ;

s e r v i c e T e s t S e r v i c e {

recovery r e m o t e E r r o r (RemoteExcep t ion e) {
System . o u t . p r i n t l n ("Exception: " +

e . ge tMessage ()) ;
}

p r o t o c o l : r e s t {
o p t i o n s {

baseURI = "/myserver" ;
por tNumber = 1234 ;
SSL = f a l s e ;

}

export ∗ Account .∗ (S t r i n g , S t r i n g , i n t) {
recovery = r e m o t e E r r o r ;

}
}

p r o t o c o l : rmi {
o p t i o n s {

r e g i s t r y N a m e = "RMITestServer" ;
r e g i s t r y H o s t = "localhost" ;
r e g i s t r y P o r t = 1099 ;
runEmbeddedReg i s t ry = t r u e ;

}

export ∗ Address .∗ (S t r i n g , S t r i n g) {
recovery = n e x t S e r v e r ;

}
}

}

Figure 2. Sample RemoteJ DDL Code

Keyword:
import | service | recovery | protocol | rest |
rmi | options | export | nextServer | abort | continue

As well as the above, there are a number of reserved works that
are dependent on the protocol that has been selected1. These key-
words are:

for the rmi protocol:
registryName | registryHost | registryPort |
runEmbeddedRegistry

for the rest protocol:
baseURI | portNumber | SSL

2.1.3 Import Statements
The DDL may contain any number of import statements. As in the
Java language, this is used to avoid having to use fully qualified
class names when referring to Java classes. Import statements may
only appear at the beginning of the DDL file.

2.1.4 Service Statement
The service statement is used to describe one or more protocols,
and associated classes, and one or more recovery statements. The
name used for the service must be the same as the name of the
DDL file with the extension ddl, for example the DDL described in
Figure 2 must be contained in the file TestService.ddl.

1 Note that additional protocols will introduce additional keywords.

The service name is used as the directory name for generated
classes prefixed, by default, by either ’client’, for client classes, or
’server’ for server classes.

2.1.5 Service Recovery Statements
Service recovery statements are used to provide the code to be
called in the event of distribution exceptions. Any valid Java code
can be stipulated, which allows a great deal of control over the
recovery mechanism as the programmer is free to provide any
recovery implementation not explicitly supported in the language
providing it can be found by the RemoteJ compiler / generator (i.e.
in the compiler’s CLASSPATH).

Recovery statements have access to the context of the remote
method call via RemoteJ’s internal Transfer object. This object
contains the remote server name, the class and method that was
called, and the method’s parameters and return type.

Recovery statements are defined with the keyword recovery
followed by the name of the recovery statement and the exception
to be caught as illustrated below.
recovery r e m o t e E r r o r (RemoteExcep t ion e) {

System . o u t . p r i n t l n ("Exception: " +
e . ge tMessage ()) ;

System . o u t . p r i n t l n ("Host : " +
t r a n s f e r . g e t C u r r e n t H o s t ()) ;

System . o u t . p r i n t l n ("Failed method call : " +
t r a n s f e r . ge tMethod ()) ;

}

In the above example, RemoteException is used as the excep-
tion type. The protocols supported by the RemoteJ DDL may, how-
ever, not use RemoteException to indicate that an error has oc-
curred. In these cases, the exception type provided by the protocol
may be used. In the cases where error codes are used in place of
exceptions, the protocol implementation is responsible for provid-
ing an exception hierarchy and appropriate mapping between error
codes and exceptions.

Any number of recovery statements may be provided but will
only be invoked if called by one or more recovery statements
contained in the export statement.

In addition, the DDL supports three additional statements that
may be used to aid recovery:

nextServer: The protocol implementation should attempt to re-
cover from a remote error by finding an additional server.

abort: The protocol implementation should stop in the event of a
remote error.

continue: The protocol implementation should ignore remote er-
rors. This statement is provided for completeness.

2.1.6 Protocol Statements
The protocol statement is used to describe the protocol to be used,
the protocol options, the classes and associated methods to be
altered to use the protocol, and the recovery strategy to be used.

In the example in Figure 2, two protocols have been specified,
the rmi protocol and the rest protocol. There may be any number
of protocol statements and there may be more than one protocol
statement for the same protocol. Each protocol statement must
contain one or more export statements.

2.1.7 Options Statements
As can be expected, different protocols may have different protocol
options and these options are stipulated in the options statement
contained in the protocol statement. As there may be more than
one protocol in a single application (or perhaps the same protocol
with different options, for example), any number of protocol and
associated option statements may be declared.

2.1.8 Export Statements
The export statement contains the class and associated methods that
are to become distributed using the protocol stipulated in the proto-
col statement. In addition, the recovery strategy may be stipulated
for those exported methods.

The export statement supports the use of the asterisk wildcard
character, which is used as follows:

The statement
export ∗ Address.∗ (String , String);

stipulates that all methods in the class Address (Address.*) with
two parameters of the type String that have any type as a return
statement (*) are selected.

A compiler error is generated if a method is matched by more
than one export statement.

3. RemoteJ Compiler
The RemoteJ compiler is a simple three-phase compiler / generator
that is used to apply distribution to existing bytecode using instruc-
tions contained in a DDL file.

Any number of back end code generators are supported thereby
allowing the compiler to be extended to support additional proto-
cols. Code generation support is provided by the abstract base class,
Protocol, which contains generalised protocol support functions
and defers specific protocol implementation to concrete subclasses
based on the protocol selected in the DDL using an implementation
of the template method design pattern [4].

Protocol

RMIProtocol

RestProtocol

Javassist

generateProtocol() {
 generate();
}

abstract void generate();

Generator

Protocol p;

generate() {
 p.generateProtocol();
}

...Protocol

Figure 3. Extendible code generation support

The compilers syntactic analysis phase is implemented as a
recursive descent parser and is therefore easy to extend to support
additional protocols. The abstract syntax tree (AST) generated by
the syntactic analysis phase is used by the contextual analysis phase
to ensure the DDL conforms to the DDLs contextual constraints.
This phase is implemented using the Visitor design pattern [4].

In contrast to other code manipulation systems that generate
AspectJ code, the RemoteJ compiler manipulates bytecode directly
using Javassist [2], a simple bytecode manipulation library. This
allows the manipulated code to be placed in a different directory
structure thereby leaving the original bytecode intact.

4. Discussion
Remote Procedure Calls (RPC) were designed to overcome the dif-
ficulties of distributed systems development where developers were

ddl ::= (ImportList)* Service RestOptions ::= BaseURI | PortNumber | SSL Semi
ImportList ::= SingleImport (SingleImport)* BaseURI ::= ”baseURI” Equals Quote
SingleImport ::= ”import” Imports Semi Identifier Quote
Imports ::= Identifier (Dot Identifier | WildCard)* PortNumber ::= ”portNumber” Equals IntegerLiteral
Service ::= ”service” Identifier LeftCurly SSL ::= ”SSL” Equals ”true” | ”false”

StatementList RightCurly exportStatement ::= ”export” ReturnValue ExportName
StatementList ::= (RecoveryList)* (ProtocolList)+ LeftBracket (Parameter)?
RecoveryList ::= RecoveryStatement (RecoveryStmt)* (Comma Parameter)* RightBracket

LeftCurly RecoveryType RightCurly
RecoveryStmt ::= ”recovery” RecoveryName LeftBracket RecoveryType ::= ”recovery” Equals RecoveryOption Semi

ClassName Variable RightBracket RecoveryOption ::= RecoveryName | ”continue” | ”abort”
LeftCurly AnyJavaCode RightCurly | ”nextServer”

ProtocolList ::= ProtocolStmt (ProtocolStmt)* RecoveryName ::= Identifier
ProtocolStmt ::= ”protocol” ProtocolList Colon LeftCurly ClassName ::= Identifier (Dot Identifier)*

Options (ExportStatement)+ RightCurly Parameter ::= ClassName
ProtocolList ::= ”rmi” | ”rest” ExportName ::= Identifier (Dot Identifier | WildCard)*
Options ::= ”options” LeftCurly (RmiOptions)+ Variable ::= Identifier

| (RestOptions)+ RightCurly RecoveryType ::= Identifier
IntegerLiteral ::= 0..255

RmiOptions ::= RegistryName | RegistryHost Identifier ::= (’a’..’z’ | ’A’..’Z’)+ (IntegerLiteral)*
| RegistryPort | Embedded Comma ::= ”,”

RegistryName ::= ”registryName” Equals Quote Identifier Dot ::= ”.”
Quote Semi Semi ::= ”;”

RegistryHost ::= ”registryHost” Equals Hostname LeftCurly ::= ”{”
| IpAddress Semi RightCurly ::= ”}”

RegistryPort ::= ”registryPort” Equals IntegerLiteral Semi LeftBracket ::= ”(”
HostName ::= Quote Identifier Quote RightBracket ::= ”)”
IpAddress ::= IntLiteral Dot IntLiteral Dot Colon ::= ”:”

IntLiteral Dot IntLiteral Equals ::= ”=”
Embedded ::= ”runEmbeddedRegistry” Equals ”true” Quote ::= ’”’

| ”false” Semi WildCard ::= “*”

Figure 4. RemoteJ DDL Language (simplified)

required to deal with low-level details such as network connections,
protocol handling, data representation between different architec-
tures, both partial and ’hard’ failures, reassembly of data packets
and various other issues. RPCs were designed to behave the same
as local procedure calls by masking the difference between local
and remote procedure calls so that, to the developer, local and re-
mote procedure calls were essentially equivalent.

RPC systems introduced the concept of an Interface Definition
Language (IDL), a language that defines procedures that are to be
distributed. The IDL language file is read by an IDL compiler,
which generates the stubs and skeletons, for a specific protocol,
that the developer uses to implement the distributed concern.

RPCs were designed for procedural languages and do not
provide object-oriented features, such as polymorphism, because
RPCs only allow for a static representation of data. Modula-3
network objects [3] and, recently, Java’s Remote Method Invo-
cation (RMI) paradigm extended the RPC concept to distributed
object-oriented systems that allows for the dynamic representation
of polymorphic data.

However, the developers of RMI argue that the RPC concept
of masking the differences between local and remote procedure
calls is flawed because there are fundamental differences between
the interactions of distributed objects and the interactions of non-
distributed objects [17]. Consequently the framework provided by
RMI requires that the developer be aware of remote objects and
remote errors that may occur while interacting with remote objects.
This awareness manifests itself in the need for developers to adhere
to the RMI framework and to ensure that remote methods throw the
RMI specific exception java.rmi.RemoteException.

While the RMI designers may well be correct in insisting that
programmers are aware of distribution concerns, the implementa-
tion of this requirement leads to code that is polluted with the cross-
cutting concern distribution because the distribution concern cross-
cuts the application making reuse of application components diffi-
cult, if not impossible. This close coupling between frameworks
and application code is not unique to RMI, it is inherent in all
object-oriented applications that use frameworks. Frameworks may
therefore be considered crosscutting in nature because a frame-
works code is scattered throughout an applications code, either
by inheritance or containment, thereby making reuse outside the
frameworks domain difficult.

Aspect-oriented programming [7] has been suggested as a way
of modularising crosscutting concerns and applying them to exist-
ing code in an oblivious manner and distribution is considered a
typical candidate for an AOP application as distribution code can
be designed as an aspect, which separates it from the actual appli-
cation.

There have been a number of different approaches to the im-
plementation of distribution as aspects in Java, such as frameworks
e.g. [1], extensions to Java e.g. [10], or the use of a general aspect-
oriented language e.g. [12]. Our approach is to raise the level of
abstraction by the use of a high level domain specific language that
allows programmers to declare the classes and methods of those
classes that they would like to be distributed, and the protocol to
use. The DDL has no concept of pointcuts or join points but in-
stead relies on a high level approach that eliminates the need for
the developer to be aware of aspect-oriented concepts, techniques,
and implementation methods.

In common with most aspect-oriented language implementa-
tions, RemoteJ relies on bytecode rewriting to implement distri-
bution. However, in contrast to current aspect-oriented languages
and frameworks, RemoteJ does not overwrite the applications byte-
code, rather distribution is applied to a copy of the classes thereby
preserving the original code so that the same application may be
run distributed or not by simply altering the systems CLASSPATH
variable.

4.1 Advantages and Limitations
The RemoteJ system currently has a number of limitations, which
we outline below.

Object serialization. There are a number of issues to the auto-
mated distribution of Java objects. The first concerns the con-
cept of obliviousness. We agree with Soares et al. [12] that sys-
tems that are to be distributed need to be aware of the possi-
bility of becoming distributed. The overriding reason for this is
that, for most Java protocols, parameter or return value classes
must implement the Serializable interface so that the ob-
ject may be converted into a byte stream and transmitted across
the wire (copy-by-value). If a class does not implement the
Serializable interface it cannot be converted into a byte
stream and, at least with the RMI protocol, needs to imple-
ment the Remote interface if it is to be used in a remote method
call, which allows the object to be accessed by a remote pro-
cedure call from the server to the client. Indeed, this is the
solution proposed by Soares et al. [12]. We believe, however,
that this is not generic enough for our solution, which sup-
ports multiple protocols and is anyway likely to lead to per-
formance issues. A simple solution may be to simply force a
class to be Serializable. However, this cannot work for all
classes, particularly if the class, or any containing class, can-
not be serialized because it contains an open file or socket, for
example. We believe that the developer needs to be aware of
the possibility of distribution and consequently needs to ensure
that classes that are passed as parameters or return values im-
plement the Serializable interface. The RemoteJ compiler
therefore generates an error if parameter and return classes are
not Serializable.

Local and remote object consistency. In remote object protocols,
such as RMI, changes applied to remote objects are not reflected
in local objects. The NRMI system and GOTECH framework
[16] overcomes this for the RMI protocol. However, in our
system, this needs to be overcome in a generalised way so that
it can be supported for all protocols that RemoteJ may support.
We plan to provide this feature in a future release.

Thread management. Java distribution protocols do not support
thread coordination so that Java language synchronization oper-
ations (synchronized, wait, notify etc.) are not propagated across
the network. Tilevich and Smaragdakis [14] discuss this issue
in some detail along with a proposed solution for the auto-
mated distribution of Java objects in the J-Orchestra system
[15]. However, their solution does not address all situations and,
as with object serialization detailed above, we believe this issue
is best left to the programmer to resolve. The RemoteJ compiler
will therefore issue a warning if a method to be distributed uses
one of the thread co-ordination operands.

We believe the above limitations are insignificant compared to
the advantages the concept of a distribution definition language
offers. These advantages can be summarised as:

Simplicity. The ability for the developer to apply distribution to
existing code without having to learn aspect-oriented concepts,
distribution frameworks, or protocols.

Error handling. Centralised error handling and recovery capabil-
ities, including automated recovery e.g. automatically connect-
ing to an alternate server if the current server becomes unavail-
able.

Multiple protocol support. The ability to support multiple proto-
cols for the same code base.

Reuse. Components can be used as distributed components or local
components thereby improving reuse for those components as
the RemoteJ system does not alter the existing bytecode, rather
it produces a copy of the classes with the distribution concern
applied. This is in contrast to current distributed programming
practises where the component is tied to the distributed system
through the need to adhere to a distribution specific framework.

As well as the advantages detailed above, the concept of a do-
main specific language for the application of crosscutting concerns
is a powerful concept that may be applied to other crosscutting con-
cerns besides distribution. For example a persistence definition lan-
guage may be used to apply the persistence crosscutting concern to
existing applications.

5. Related Work
Although many domain specific languages (e.g. [5]) have been
proposed to aid distributed programming, few have used aspect-
oriented concepts to apply the distribution concern to existing ap-
plications. The closest work to ours thus far is the D and AWED
languages.

The D language [8] was the first language to provide explicit
support for distribution. D consists of the COOL synchronisation
sub-language and RIDL, a sub-language for the definition of re-
mote interfaces. AWED [9] is a comprehensive aspect language for
distribution which provides remote pointcuts, distributed advice,
and distributed aspects and is implemented by extensions to the
JAsCo [13] AOP framework.

Both D and AWED use a much lower level approach than
RemoteJ, which, by dispersing with the AOP notions of pointcuts,
advice, and aspects in favour of a distribution definition language,
is at a much higher level of abstraction. Consequently RemoteJ is
much easier to use than previous approaches. In addition, RemoteJ
supports centralised exception management, which is not supported
by either D or AWED.

A number of systems, such as [1, 12, 16], use the general pur-
pose AspectJ [6] language to apply distribution concerns to existing
applications. These approaches target a single protocol, typically
RMI, and generate AspectJ code to implement distribution.

JavaParty [11] and DJcutter [10] use a language based approach
and supply Java language extensions to provide explicit support for
distribution. Again these systems target the RMI protocol.

The J-Orchestra system [15] is an automatic partitioning system
for Java. J-Orchestra uses bytecode rewriting to apply distribution
and claims to be able to partition any Java application and allow
any application object to be placed on any machine, regardless
of how the application objects interact. Users interact with the J-
Orchestra system using XML files, and a GUI is currently under
development. However, J-Orchestra does not have the concept of
a domain specific language and targets a specific protocol, again
RMI.

We believe the RemoteJ system is the first automated distri-
bution system to provide the concept of a Distribution Definition
Language that targets multiple protocols and that provides a central
recovery mechanism for distribution errors.

6. Conclusion and Future Work
In this paper, we have presented the RemoteJ system, a system that
consists of a compiler / generator to apply distribution to existing
applications using information contained in a high level domain
specific language we call a Distribution Definition Language. Re-
moteJ uses an aspect-oriented approach to apply the distribution
concern to existing code by altering bytecode to apply the distribu-
tion concern. We believe this concept significantly simplifies dis-
tributed systems development and improves software reuse.

RemoteJ currently has a number of limitations and issues, such
as protocol agnostic local and remote object consistency and thread
co-ordination, that needs to be fully explored. Additional language
constructs, such as clustering and replication, will improve the
capability and sophistication of the system and further protocol
support will further refine the language.

References
[1] M. Ceccato and P. Tonella. Adding Distribution to Existing

Applications by Means of Aspect Oriented Programming. In
Fourth IEEE International Workshop on Source Code Analysis and
Manipulation, 2004, pp. 107-116.

[2] S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient
Java Bytecode Translators. In Proceedings of the 2nd international
conference on Generative Programming and Component Engineering
(GPCE ’03), Springer-Verlag, 2003, pp. 364-376.

[3] D. Evers and P. Robinson. Modula-3 network objects over ANSA:
heterogeneous object-based RPC in a modern systems programming
language In Proceedings of the 5th workshop on ACM SIGOPS
European workshop, Mont Saint-Michel, France, 1992, pp 1–5.

[4] E. Gamma, R. Helm, R. E. Johnson and J. Vissides. Design
Patterns. Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[5] E. B. Henri. Orca: a language for distributed programming,
SIGPLAN Not., 25 (1990), pp. 17–24.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and
W. G. Griswold. An Overview of AspectJ, Lecture Notes in Computer
Science, 2072 (2001), pp. 327–355.

[7] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J. M. Loingtier and J. Irwin. Aspect-Oriented Programming.
In Proceedings of the European Conference on Object-Oriented
Programming, Berlin, Heidelberg, and New York Springer-Verlag,
1997, pp. 220–242.

[8] C. V. Lopes and G. Kiczales. D: A Language Framework for
Distributed Programming, 1997.

[9] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. De Fraine and
D. Suvée Explicitly distributed AOP using AWED. In Proceedings
of the 5th international conference on Aspect-oriented software
development, Bonn, Germany, 2006, pp. 51–62.

[10] M. Nishizawa, S. Chiba and M. Tatsubori. Remote pointcut: a
language construct for distributed AOP. In AOSD ’04: Proceedings
of the 3rd international conference on Aspect-oriented software
development, Lancaster, UK, 2004, pp. 7–15.

[11] M. Philippsen and M. Zenger. JavaParty - Transparent Remote
Objects in Java. In Concurrency: Practice & Experience, 9 (1997),
pp. 1225–1242.

[12] S. Soares, E. Laureano and P. Borba. Implementing distribution and
persistence aspects with AspectJ. In OOPSLA ’02: Proceedings of
the 17th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, ACM Press, Seattle,
Washington, USA, 2002, pp. 174–190.

[13] D. Suvée, W. Vanderperren, and V. Jonkers JAsCo: an Aspect-
Oriented approach tailored for Component Based Software Devel-
opment. In Proceedings of the 2nd international conference on
Aspect-oriented software development, 2003, pp. 21–29.

[14] E. Tilevich and Y. Smaragdakis. Portable and Efficient Distributed
Threads for Java. In ACM/IFIP/USENIX 5th International Middle-
ware Conference (Middleware ’04), Toronto, Ontario, Canada, 2004.

[15] E. Tilevich and S. Urbanski. J-Orchestra: Automatic Java Appli-
cation Partitioning. In European Conference on Object-Oriented
Programming (ECOOP), Malaga, 2002.

[16] E. Tilevich, S. Urbanski, Y. Smaragdakis and M. Fleury. Aspec-
tizing Server-Side Distribution. In 21st IEEE/ACM International
Conference on Automated Software Engineering, Tokyo, Japan, 2003.

[17] J. Waldo, G. Wyant, A. Wollrath and S. Kendall. A Note on
Distributed Computing. Sun Microsystems Laboratories, Inc., 1994.

