
Aspect Oriented DSLs
for Business Process Implementation

Arno Schmidmeier

AspectSoft
Lohweg 9

91217 Hersbruck

Germany
+49/91 51/ 90 50 30

Arno @aspectsoft.de

http://www.aspectsoft.com

ABSTRACT
Domain specific languages (DSLs) are a very important

approach to raise abstraction and enable an efficient

communication between business experts and application

software developers. Some DSLs could benefit from the

application of ideas from the AOSD world. Therefore, it is a

natural idea to enhance an existing DSL with AOP based

programming ideas. This paper describes such an attempt. The

approach has been successfully applied in several commercial

projects. Commercially available DSLs in the domain of

application integration, service orchestration and business

process management have been enhanced with composition

filters.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Contructs and
Features

General Terms

Management, Documentation, Design, Languages, Theory

Keywords

Aspect Oriented Software Development, AOP, DSL, BPM,
BPEL, Enterprise Application Integration, Process Engines,
Workflow Engines

1. INTRODUCTION
Domain Specific Languages (DSL) are either textual or
graphical languages for a given domain. They should simplify
the software development in a specific domain

• by using usual paradigms, concepts, terms and
graphical representations of the domain

• and by creating the suitable abstraction and
simplification for the domain.

DSLs are often crafted to a specific domain, to a family of
projects. However, creating its own DSL is often not possible
for commercial reasons, e.g.:

• A viable Return of Investment can not be justified for
the creation of the own DSL.

• The big upfront effort to create a DSL may delay the
time to market.

This is true especially for small to medium or for agile teams.
The usual alternative approach in industrial settings is the
selection of a suitable commercial of the shelf language and its
interpreter or compiler, which provide a suitable abstraction and
which can be easily handled by the domain specialist. Then this
language is the DSL of the project by definition.

This approach is often performed in the domain of Enterprise
Application Integration (EAI) and Service Orchestration as well
as Business Process Management (BPM). Projects in these
domains use often a graphical defined Finite State Machine
(FSM) as their DSL. Such a DSL is often marketed as Workflow
Engine, Process Engine or Business Process Engine. You can
find several open source (e.g. [6]) and commercial
implementations (e.g. [5], [7], [8]), and even several
specifications (e.g. [20]), for this type of DSLs. The next section
describes these DSLs, the architecture of their interpreters and
the development platform.

These DSLs can significantly simplify the development of small
solutions. High level business processes models (e.g. epc models
developed in IDS Scheers toolset [9]), can often be directly
transformed in the FSM. However, implementing larger or
complex processes with these engines is normally a cumbersome
and problematic task, for the reson of:

• typical process specific crosscutting concerns,

• typical domain specific crosscutting concerns,

• and typical technical crosscutting concerns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Workshop DSAL ‘07, March 12, 2007 Vancouver, British Columbia,
Canada
Copyright 2007 ACM 978-1-59593-659-8. . . $5.00 0/00/0004…$5.00.

The third section provides some typical concerns and shows
how these specific concerns can easily damage simple process
models through scattered transition actions and functionality.

The forth section describes some simple enhancements to the
FSMs and their interpreters, which enhance the FSM to a
composition filter based FSM, which is capable to modularize
these crosscutting concerns. The modular implementation of the
sample from the third section is outlined in the fifth section. The
sixth section contains a summary, conclusions and future work.

2. Description of the DSLs
The DSL for a project in the domains Enterprise Application
Integration, Service Orchestration or Business Process
Management are often consisting of a dialect of a Finite State
Machine (FSM). The range of dialects has a great variety. It
covers amongst others executable UML state diagrams [10],
BPEL engines (e.g. [11]) and workflow engines [6]1. A FSM is
normally programmed with State Transition Diagrams.
Transition conditions normally consist of the occurrence of an
(external) event. If this is insufficient, these conditions can be
further specified by Boolean expressions. Figure 1 shows a
simple sample of such a FSM.

Figure 1

Each FSM has its state and set of attributes, which can be
defined by the user.

The FSM can perform some actions. Each action can perform
several tasks, e.g. sending some events, invoking a system, a
service, some low-level language sniplets (e.g. Java or C#-Code
fragments) or changing and setting the value of an attribute of
the FSM. Following action types are usually available in such a
DSL:

• Entry action: executed whenever a state is entered

• Exit action: executed whenever the FSM exits a state

• Transition action: executed, whenever a transition
fires.

Typical available commercial FSMs may provide some
“syntactic modelling sugar”, such as Action States and Activity
States, Action States fire automatically a transition to the next
states. Activitiy States are like normal states, but they provide
often some support and hooks for GUI-frameworks, which
implement the technical infrastructure for manual activities
within the business process. Another important type of states are
Fork and Join states. These states are required to fork and join
multiple parallel threads of execution inside one FSM instance.
Some implementations provide nested states. A nested state
encapsulates a complete “sub” FSM. These advanced features
are mandatory for efficient commercial application. But, a
detailed discussion of these features would lead to far for this

1 Please note: this difference is important in practical projects,

but not for the content of this paper

paper, because they are not capable to modularize the concerns
from the next section.

The rest of this section sketches a typical architecture for typical
interpreters of these FSM based DSLs. The FSM interpreter
normally acts as a kind of application server or is often deployed
as a component in an application server. Several protocol
gateways are installed in the application server. Each of the
protocol gateways transforms events into invocation of popular
communication protocols such as JMS, MQ Series, web
services, IIOP, RMI and vice versa. Whenever a new event is
created out of a “native protocol activity”, the protocol gateway
is responsible to forward this event to the FSM interpreter. The
FSM interpreter forwards this event to an internal event
dispatcher. This event dispatcher is responsible to identify the
relevant FSM instance, and pass this instance over to the FSM
interpreter, which finally processes the event and its caused
transitions inside the FSM. This processing normally changes
the state of the FSM and attribute values of the machine.
Attributes and the state are normally stored transactional in an
OODBMS, in a XML-database or in a relational database, which
is often wrapped with an OR mapping tool such as Hibernate
[12].

Figure 2 shows a typical architecture of such a system.

Figure 2

3. Typical Crosscutting Concerns in these

Domains
The potential of crosscutting concerns to make even simple
processes hard to understand can easily be shown on a simple
but realistic sample. Assume, a bank wants to automate its credit
approval processes. The reception of a valid approval request
event puts the FSM in the state Request Stored. Whenever the
Request Stored State is entered, a proposal evaluation process is
started through a call to an external asynchronous service, e.g.
through an event which is transformed through the infrastructure
to a JMS message or to a Web Service call. This process may
end with an acceptance, a refusal or manual investigation event,
which indicates the need for manual evaluation. These events
trigger a transition to the final Accept and Refused states or
trigger a transition to the Manual Approval State. Any user
decision in the Manual Approval State causes a transition to the
Accept or Refused state. Figure 3 displays this process. Such
models are often drawn and written by business analysts as a
result of an initial design or requirement analysis.

Engine

Interpreter

Database

P
ro

to
c
o
l

OR-Mapping

Tool

P
ro

to
c
o
l

JMS

Adapter

Web
Service

JMS

Adapter

Web
Service

incoming outgoing

m
a
n
u
a
l

in
ve
stig
a
tio
n

ac
ce
pt

Figure 3

This process definition does not care about typical crosscutting
concerns. Let’s have a look at some typical crosscutting
concerns and their implications to the process. Typical technical
concerns:

• All communication protocols may cause technical
errors. (Communication Failure)

• In case of technical errors duplicate transmissions of
events may occur (Duplicate Transmissions)

• Typical domain specific concerns are soft real time
requirements, e.g. the process must be performed in
several minutes. (Timeouts)

• A typical process specific concern is the possibility for
the customer to modify his approval request before it
is approved. (Modification Proposal)

If the FSM receives a modified proposal event, then the concern
Modification Proposal requires adding transitions from every
state to the Request Stored State.

Timeouts require the definition of an additional timeout
transition with some timeout activities from every state.

Duplicate Transmissions and Communication Failures require
the definition of the process behaviour in case of technical
errors. Such a scenario is solved in many times through the
definition of an Error state. A process administrator has with this
solution the possibility to restart the process, as soon as the error
is fixed, which caused the transition to the error state. For each
error scenario we have to add at least one transition from each
state to the error state.

The FSM may receive unexpected events or outdated events
because of each of these concerns. Detecting outdated events is
tricky. It requires some support of messaging and data patterns
such as Message Expiration, Correlation Identifier from [13]
and Executional Context from [21]. Furthermore you have to
guard each transition with a tangling invocation of a simple
function, which performs the outdated or duplicate event
detection based on the information in the event or its header.
Finally, you have to add actions which maintain and add
detection support information (e.g. time to life information [13],
a transition count sequence number) into each event or its event
header.

We started with a simple process which contained four states
and six transitions and ended with a process consisting of five
states and 17 transitions, each guarded by tangling code for
outdated and duplicate event detection.

Figure4

Figure 4 shows the complete solution, Event annotation is
hidden for a minimal graphical readability of the model.
Handling such process models correctly just in the usual
graphical DSLs is extremely difficult.

4. Composition Filter based FSM.
It is a natural idea for anybody, who is familiar with the concept
of Composition Filter and has practical experiences with these
DSLs [14], to define a composition filter based FSM to increase
the modularity of the artefacts expressed in the DSL.

A Composition Filer based FSM works in the same way as the
described FSM from the second section. Additionally the user
has the possibility to define Composition Filters. Each filter can
change or drop the event, forward it to the next filter, submit
additional events, and change attributes and the state of the
FSM. Each filter has complete access to the state and all
attributes of the FSM as well as to all attributes to the event.

Each filter consists of two parts. The first part is responsible to
identify, if the filter has to interact with the event, the other part
is responsible to define what the filter does for the processing of
this event. The first part works equal to a dynamically evaluated
pointcut statement and is often named as When Clause, and the
second part works like an around statement from the AOP
platform AspectWerks [15] or the AOP language aspectj [1] and
was often named as a then clause. It is obvious that a member of
the AOSD community would have chosen different names.
These names were taken from rule engines. Rule engines are
other high level DSLs, which are quite popular and well known
by the business process developers and their business analysts.
These name choices simplified the understanding of the concept
of Composition Filters for these important groups significantly.2

In most projects these filters have been implemented through the
introduction of an interceptor framework between the
transformation gateways and the FSM and between the FSM and
the protocol transformation gateways for outgoing messages.

2 It is also sensible to change the name of the concept

Composition filter to the name “process rules” to make it
easier to understand the concept and architecture in real life
projects.

This interceptor framework is responsible to manage the filter,
and forward the events to the filter. The interceptor framework is
often based on a graphical rule management system, such as
JRules [4]. Otherwise the interceptor framework is normally
implemented by the application of the famous command pattern
[3]. In this case, filters are implemented as simple Java or C#
classes or in an Object Oriented script language like Ruby or
Python. The developer simply has to subclass an abstract
filterclass and provide the implementation of the when and then
clauses as a template method [3]. Figure 5 provides the
Composition Filter based FSM architecture. Even most closed
source FSM implementations3 provide sufficient public hooks
for this architectural enhancement.

Figure 5

5. Example Resolved
This section outlines how the concerns could be implemented
with composition filters and simple modifications from the
initial FSM model, which was shown in Figure 3.

5.1 Concern Modification Proposal
This concern could be simply implemented in one composition
filter. The When Clause just has to check, if the event is from
the type modified proposal event. The then clause must simply
change the state of the engine to the proposal created state.

5.2 Timeout concern
This concern could be implemented in just one simple filter for
simple business requirements for handling timeouts. E.g if it is
sufficient to proceed to the Refused or Accept State. In these
cases the When Clause must only check, if the event is from the
type “timeout”. The then clause must simple change the state of
the engine to the Refused or Accept State.

However, even very complex business requirements for this
concern can be implemented with composition filter. Even quite
complex logic such as retry twice, send each time an escalation
email to the manager in duty, and if that did not work, refuse the
proposal could be implemented in just one composition filter
and an additional value attribute in the FSM, which contains the
number of performed retries. The implementation of the then
clause could look like:

If (fsm_instance.steps<2):

 sendEmail(getManagerInDuty())

3 This is at least true for all implementations, which are known

by the author.

 drop(event)

 increment(fsm_instance.steps)

else:

 fsm_instance.setState(PROPOSAL_REFUSED)

So this concern could be modularized in exactly one artefact.
This enables an easy modification and enhancement of the
solution, because the concern is fully modularized and
orthogonal to the business code.

5.3 Concern Handling of Communication

Failures
A typical implementation of this concern consists of one
additional state in the FSM model and an Error handling
composition filter. The error handling composition filter has a
when clause, which selects all events. The implementation of the
then clause depends on the business domain and some of its
restrictions. However there exists a set of standard policies,
which are normally applied. One common policy is a retry
policy, A typical implementations of such a policy is the retry
once policy. Its implementation in case of a failure could look
like:

• use some repairing and auditing activities, (e.g. do a
rollback, and retry, log the exception messages, causes,
events, notify an administrator etc.

• and finally if none of the repairing attempts has succeeded,
it might change the state of the process to the error State.

5.4 Concern Handling of Outdated Messages
This concern does not appear normally as a direct concern from
the business drivers of the project. The business drivers
normally assume that outdated messages can not occur.
However they occur in practice caused either by business related
concerns such as time outs and modification proposal or
technical related concerns such as Communication failure.4 Most
non trivial FSMs suffer therefore easily from outdated events,.

Composition filters can not be used to apply the architectural
data structures patterns. But, all the guarding activity and all
activity related to maintain and add detection support
information can be easily solved with two composition filter.
Both filters must share some process specific values, e.g. a
transition count sequence number. These values should be added
to the process attribute set.

The first filter is only responsible for adding the information
into outgoing events. It has a when clause which selects all
outgoing events, and a then clause which adds decision support
attributes such as the transition sequence number to the context
of outgoing events.

4 In real projects this concern is not recognised as a complete

independent concern and often ignored, because there are
several marketing myth, which create the illusion that these
scenarios can be neglected. I reviewed several projects, where
developers fixed more than 150 independent bug reports, till
such a business process was reliable enough to be released in
production.

Engine

Interpreter

Database

OR-Mapping

Tool

P
ro

to
c
o
l

JMS

Adapter

Web
Service

incoming

P
ro

to
c
o
l

JMS

Adapter

Web
Service

outgoing

In
te

rc
e
p
to

r

fra
m

e
w

o
rk

In
te

rc
e
p
to

r

fra
m

e
w

o
rk

The second filter is responsible for updating the decision
support attributes and dropping old attributes. It has typically a
where clause, which implements an algorithm such as:

If (isOutdated(

 event.context.transition_nr):

drop(event)

return

proceed(event);

Increment_suportinformation(fsm_instance)

5.5 Comparison with the solution without

Composition Filter
Table 1 shows the different numbers of the modelling elements.
The lowest numbers has naturally the model from the business
analyst, as this is just a design model and far away from an
executable model. The traditional solution with the four simple
concerns (in practical projects there are several more to be
handled) has a dramatic increase in the number of transitions
and activities

.

 Without
additional
concerns

Traditional
implementation

with concerns

With
composition
filers

Number of
states

4 5 5

Number of
transitions

6 17 7

Number of
activities

~6 ~35 ~7

Number of
guarding
statements

0 17 0

Number of
Composition
Filter

0 0 5

Table 1

The solution with the composition filter has only a slight
increment in the number of transitions, activities and state. As a
trade off this solution adds five simple composition filters. Three
of the filters can be reused in lots of different projects, nearly in
all FSMs of a given organisation. The filter for the timeout
handling might be derived (e.g. parameterized) from a library of
filters for company policies.

Furthermore we have now the possibility to track a concern to
the major module, which is handling the concern. This is a great
additional benefit for practical process improvement projects,
which have strong legal audit requirements. We have another
big plus in the fact that all new concern can be implemented in a
modular way, enabling a fast improvement when necessary.
Even our minimal realisation of the timeout concern could be
dramatically improved by some lines of code, (e.g. by basing the

transition on a simple statistical estimate) than the directly
modelled solution, where only one transition is normally
modelled.

However additional typical additional requirements can be
realised with minimal effort, as example Aris PPM [17]
monitoring could be added by just one library filter, which could
even be reused between different projects and processes.

m
a
n
u
a
l

in
ve
stig
a
tio
n

ac
ce
pt

Figure 6

Figure 6 shows the modelled process. This process looks pretty
close to the original process without any of the concerns, as a
simple comparison between Figure 6 and Figure 5 suggests. It
did not explode in graphical complexity like the traditional
solution. This enables business analysts and sometimes even
business owners (e.g. Line of business manager, process
manager) to reason over the process implementations in
production and identify improvement potentials. This is a clear
enabler for agile business process management and Domain
Driven Design [16].

6. Summary, Conclusion and future Work
This paper shows a practically proven approach how
composition filter can be used to enhance FSMs dialects, which
are very often used as DSLs from the shelf for Business Process
Management, SOA orchestrations or application integrations
process models. The samples demonstrate:

• that this approach increases the modularity of typical
domain specific concerns

• that the AOP enhancement of the DSL simplify the
implementation of concerns important to the business and
domain specialists.

In addition this paper demonstrate, that AO based domain
specific languages are not only relevant for classical technical
problems such as synchronisation, they are also relevant for
business oriented DSLs.

The experiences in the actual projects, where this approach was
used, demonstrated great improvements against similar projects,
which used only plain FSMs. Also there have been significant
hints, that there exists a complete AOSD tool and methodology
stack ranging from process analysis and design over service
implementation to improved infrastructure adaptation. The
potential to adapt and use existing infrastructure such as
CORBA and J2EE more efficiently with AOP languages such as
AspectJ has been demonstrated in [18]. Improvements in the
effort to craft services out of exisiting java applications have
been shown in [19]. It is now one of my major interests to
generalize and formalize the improvements through the

application of Aspect oriented techniques in the analysis and
design activities of business process management projects.

7. Literature
[1] AspectJ Team, The AspectJ Programming Guide,

http://www.eclipse.org/aspectj , December 2006

[2] Martin Fowler, Kent Beck, John Brant, William

Opdyke, Don Roberts, Refactoring, Addison-Wesley,
1999

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J.
Design Patterns, Addison-Wesley, 1995

[4] ILOG, Rules, http://www.ilog.com/products/rules ,
January 2006

[5] Vitria, BusinessWare,
http://www.vitria.com/products/platform, October
2005

[6] JBoss, JBoss jBPM,
http://labs.jboss.com/portal/jbossjbpm December

2006

[7] Tibco, Business Process Management Software,
http://www.tibco.com/software/business_process_ma

nagement/ December 2006

[8] IBM, Websphere MQ Workflow, http://www-

306.ibm.com/software/integration/wmqwf/
December 2006

[9] IDS Scheer, Aris Toolset, http://www.ids-scheer.com,
January 2006

[10] OMG, Unified Modeling Language,
http://www.uml.org/, January 2006

[11] Active endpoints, ActiveBPEL Engine Overview,

http://www.active-endpoints.com/active-bpel-engine-
overview.htm January 2006

[12] JBoss, Hibernate, http://www.hibernate.org/ January
2006

[13] Gregor Hophe, Bobby Woolf, Enterprise Integration

Patterns, Addison Wesley, 2004

[14] University of Twente, Composition filter research

homepage

http://trese.cs.utwente.nl/oldhtml/composition_filters/
January 2006

[15] AspectWerkz, AspectWerkz, ,

http://aspectwerkz.codehaus.org/ January 2006

[16] Eric Evans, Domain Driven Design, Addison Wesley,

2003

[17] IDS Scheer, Aris Process Performance Manager,

http://www.ids-
scheer.com/germany/products/aris_controlling_platfo
rm/49532 January 2006

[18] Schmidmeier, A: Using AspectJ in Component-Based

Architectures on the Server Side, Invited talk at

AOSD'02, Enschede, April, 2002

[19] Schmidmeier, A.: Using AspectJ to Eliminate

Tangling Code in EAI Activities, practitioners report
at AOSD´03, Boston, 2003

[20] IBM, et.al, Business Process Execution language for

Web Services, http://www-
128.ibm.com/developerworks/library/specification/ws

-bpel/ January 2006

[21] Allan Kelly, The encapsulate Context Pattern,
Overload 63, Oktober 2004

