
ALPH: A Domain-Specific Language for Crosscutting Pervasive
Healthcare Concerns

Jennifer Munnelly
Distributed Systems Group

Trinity College Dublin
munnelj@cs.tcd.ie

Siobh́an Clarke
Distributed Systems Group

Trinity College Dublin
sclarke@cs.tcd.ie

Abstract
Pervasive healthcare is an advancing discipline that applies ubiq-
uitous computing features to applications deployed in the health-
care domain. In these applications, ubiquitous computing concerns
and health informatics concerns are entwined with base function-
ality resulting in significant, complex crosscutting code. Domain-
specific languages (DSLs) can reduce development effort by pro-
viding higher level programming abstractions for domain-specific
functionality. We introduce ALPH (Aspect Language for Pervasive
Healthcare); a DSL that provides domain-specific constructs for
tasks and entities within the pervasive healthcare domain. The DSL
is translated into an aspect language and the crosscutting behaviour
is weaved. We describe an example implementation to illustrate the
level of abstraction that can be achieved using domain-specific con-
structs.

Categories and Subject Descriptors D 2.3 [Software Engineer-
ing]: Coding Tools and Techniques

General Terms Languages, Performance, Design

Keywords ALPH, Domain-Specific Languages, Aspect-Oriented
Programming, Pervasive Healthcare

1. Introduction
Applications in the advancing area of pervasive healthcare employ
the features of ubiquitous computing to advance technology in the
healthcare sector. Like many industries, healthcare has recognised
the advantages to be gained by the applied use of technology. Glob-
ally, technology has reengineered the healthcare industry resulting
in increased productivity, reduced human error and increased inter-
operability between various healthcare areas and facilities.

The term ”pervasive healthcare” represents two focal aims;
firstly to enable access to healthcare information anytime, any-
where, and secondly to apply ubiquitous computing technology in
order to create intelligent applications that can apply these benefits
as required e.g., dynamically adapting to their environment.

To develop applications in the pervasive healthcare domain,
many difficulties must be overcome. These include both ubiquitous
computing and health informatics issues. Incorporating ubiquitous
computing concerns requires the adoption of issues including mo-
bility and context-awareness. These issues are inherently crosscut-
ting as the entire application must adapt behaviour at many points

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Workshop DSAL ’07 March 12, 2007 Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM 978-1-59593-659-8. . . $5.00

in the base functionality. Health informatics introduces concerns
including messaging formats and security. Healthcare messaging
crosscuts entire applications and is diametrically linked with all
communication both within applications, and between autonomous
applications. These concerns are discussed in detail in Section 2.

Pervasive healthcare applications have typically been developed
using traditional programming techniques. With the arrival of many
ubiquitous middlewares and frameworks, the ubiquitous comput-
ing side of development has been aided, but there is little support
for pervasive healthcare application development in its entirety.
We propose a domain-specific language for pervasive computing,
ALPH (Aspect Language for Pervasive Healthcare). Domain spe-
cific languages provide the means to program efficiently within a
particular domain. High level constructs carry out tasks specific to
the domain and provide a higher level of abstraction to developers.
This leads to more expressive code and eases application develop-
ment. The use of DSLs in lieu of general purpose languages (GPLs)
reduces the amount of domain-specific knowledge required by the
developer, as the constructs are more intuitive and semantically rep-
resentative. The ALPH language aims to provide constructs which
represent domain-specific tasks or entities. The DSL itself is trans-
formed via a dynamically extensible translator into an aspect lan-
guage, which is weaved into the base application. The rest of this
paper is structured as follows: Section 2 discusses crosscutting con-
cerns in pervasive healthcare, Section 3 describes the domain analy-
sis, Section 4 discusses a prototypical implementation, Section 5
outlines related work and Section 6 illustrates our conclusions.

2. Crosscutting Pervasive Healthcare Concerns
The concerns that are scattered and tangled throughout pervasive
healthcare applications include both ubiquitous computing con-
cerns and concerns from health informatics.

2.1 Ubiquitous Computing Concerns

In previous work we focus on two key areas of ubiquitous comput-
ing; mobility and context. We studied their implementation in ubiq-
uitous computing applications and identified the recurring concerns
that were tangled within the base functionality. In mobility, eight
primary concerns and a series of ancillary concerns were identi-
fied as being crosscutting. The primary concerns are roaming, ser-
vice discovery, device discovery, ad hoc networking, limited con-
nectivity, location, proximity, and quality of service [16]. The in-
corporation of context-awareness enables applications to identify
changes in the environment and adapt accordingly. We have bro-
ken down context into eight sub-categories, each dealing with a
different type of crosscutting context. The context categories are:
user, social, device, location, environment, application, time and
infrastructural context [2]. The ancillary concerns are well known

issues including security and distribution. These have been heav-
ily researched and have many existing solutions therefore we men-
tion them only for completeness. Reasoning has also emerged as a
frequent crosscutting concern in pervasive healthcare applications.
Cross-checking prescribed medicines with medicines administered
and inferring diagnosis from symptoms are examples of reasoning
functionality identified. Our findings are supported by findings of
requirement engineering studies in the domain [13][15].

2.2 Health Informatics Concerns

When applications are deployed in a healthcare environment, ad-
ditional concerns are encountered. The use of varying hospital and
departmental information systems create the need for standardis-
ation. Conformance to standards must be implemented in order to
enable interoperability of both in-house heterogeneous systems and
inter-establishment systems. The international Health Level Seven
(HL7)1 standards institution promotes and enforces the standardis-
ation of electronic healthcare information to facilitate its exchange
and management. These standards must be incorporated throughout
the base code, resulting in badly modularised applications. Com-
prehensive Electronic Health Record (EHR) systems are full pa-
tient records consisting of files and components from various hos-
pital and healthcare professional systems. Many pervasive health-
care applications aim to incorporate some form of EHR. EHRs have
proven extremely difficult to develop as many issues again cross-
cut entire systems e.g., the manipulation of patient records. Huge
duplication exists even in situations where EHRs have been im-
plemented due to the requirement for logging and paper trails. The
provision of national or international patient identification numbers
is also a frequent problem.

3. Domain Analysis
The purpose of providing a DSL is to ease application development
in the target domain, by providing programming abstractions for
domain-specific functionality. In order to identify this functionality
it is necessary to perform a comprehensive domain analysis. This
section describes the details of the domain analysis carried out,
and the resulting output including the domain-specific concepts and
terminology.

3.1 Application Analysis

The requirement for a DSL is often only recognised after sub-
stantial development of domain-specific software in the field us-
ing a GPL. We examined applications in the domain in order to
assess both the common abstractions and the crosscutting nature
of domain-specific functionality. The reoccurrence of functionality
and the repetition of domain-specific tasks throughout the applica-
tions results in the identification of domain-specific concerns.

In the pervasive healthcare domain, various applications were
examined and a scenario was also implemented. Applications were
examined against the previously described set of ubiquitous com-
puting concerns that have been shown to be crosscutting. Figure
1 illustrates the classification of applications according to the con-
cerns they incorporate. Applications are generally either patient or
health care professional based i.e., used in the home or within a hos-
pital environment. Hospital based applications [3] [4] were found
to include most ubiquitous computing concerns. The communica-
tion concern heading in Figure 1 implies the potential requirement
for healthcare specific messaging formats and protocols as the stan-
dards outline communication protocols. A scenario depicting an in-
telligent pervasive healthcare application [6] was extended to make
use of HL7 messaging standards. Implementation confirmed that

1 http://www.hl7.org/

Figure 1. Concern Identification in Domain Analysis

similar concerns were again present. These commonalities in con-
cerns form the basis for abstractions in the DSL.

3.2 Concepts and Terminology

To identify the terms and concepts to be used in the DSL, existing
representations of entities and tasks in the domain were examined.
SOUPA [7] defines a standard ontology for pervasive and ubiq-
uitous computing applications. It describes core entities including
person, event, action, time and space and location. Ontologies have
been used to establish semantic models in a domain [8]. The basic
concepts represented are actor, location, time, activity, and device.
The terms used in these ontologies, along with the previously iden-
tified concerns, create the basis for terminology used in the vocab-
ulary of the DSL.

4. Prototypical Implementation
The aim of ALPH is to provide a complete DSL, including a com-
prehensive library of high-level constructs and a framework includ-
ing a library of concerns to carry out the domain-specific function-
ality. This paper presents an initial implementation as an exam-
ple of how ALPH raises the semantic level of programming using
higher-level notations. It is a limited prototypical implementation
and does not cover many of the deeper issues involved in DSL cre-
ation. ALPH is mapped to an aspect language so the resulting GPL
translation may be weaved into the base application. The initial im-
plementation is mapped to AspectJ, and deals only with the notions
of aspects, pointcuts, joinpoints and advice. It does not address any
other available AspectJ functionality.

4.1 Design

We describe the design of our implementation in two parts. The first
describes a high level view of how the domain-specific constructs
are translated to executable GPL code using a translator. The sec-
ond describes how the translator itself is created.

4.1.1 DSL Translation

The constructs available to the developer include a subset of the
concepts and terminology discussed in Section 3.1.2. The applica-
tion developer implements the base application in a GPL without
having to include the crosscutting concerns. The crosscutting sec-
tions are then implemented using ALPH. The developer’s ALPH
program is then translated into an aspect language using a pro-
vided dynamically extensible translator [1]. The result is one or
more compiled aspects, which are then weaved into the base ap-
plication on execution using the aspect language’s existing weaver.
The aspects may contain generated code from a library of existing
aspects of crosscutting concerns.

Figure 2. DSL Translation

Figure 3. Translator Generation

The end product is a complete pervasive healthcare application
as illustrated in Figure 2. The implementation details of this step
are described in Section 4.2.

4.1.2 Translator Generation

The translator that carries out the translation from the domain-
specific constructs to the GPL must first be created as shown in
Figure 3. It requires the ability to recognise what functionality each
construct is mapped to and what output to produce. A translator
generator Depot4 [1] was used for the creation of the ALPH trans-
lator. Depot4 is a pre-processing metasystem that generates dynam-
ically extensible translators for DSLs. Depot4 requires a formal
definition of the DSL grammar in order to create an appropriate
translator. It does this by means of the metalanguage Ml4, an ex-
tension of Extended Backus-Naur Form (EBNF) [9]. Once a formal
definition of the DSL and its semantics are provided, Depot4 gen-
erates the translator as a collection of Java classes. These classes
are invoked when the developer translates the domain-specific con-
structs. This then triggers the process described in Section 4.1.1
i.e., the DSL is translated into an aspect language.

4.2 Implementation

This example implementation illustrates how ALPH might provide
domain-specific constructs to pervasive healthcare application de-
velopers.

4.2.1 Grammar Definition

Domain-specific constructs must be transformed from their high
level state to a target GPL or output. This is performed by means
of the translator generated according to a formal definition as de-
scribed in Section 4.1.2. A section of the metalanguage formal de-
scription of the example ALPH translator is illustrated below in
Listing 1.

ALPH = lang −> l a n g .
l ang = a s p e c t func−> ’ \n ’ a s p e c t f u n c .
a s s i g n = i d e n t [’ , ’ a s s i g n]−> [i d e n t ’ ; ’] i d e n t .
a s p e c t = a s s i g n−> ’ \n p u b l i c a s p e c t ’ a s s i g n ’ { ’ .
f unc = a s s i g n a c t o r−> ’ \n p o i n t c u t ’ a s s i g n ’ () :

e x e c u t i o n (∗ ’ a c t o r ’ (. .)) ; ’ .

Listing 1. Translation Description in the Ml4 Metalanguage

4.2.2 Dynamically Extensible Translator

The formal definition shown in Listing 1 is used by the translator
generator to construct the ALPH translator. The output is a com-

piled Java translator which is then used to translate the domain-
specific constructs into the target general purpose language, in this
example, AspectJ. A section of the generated code is shown in List-
ing 2. Extensibility is one of the defining features of Depot4. The
newly created language, and its associated translator, can be easily
extended by adding the new functionality to the formal definition.
This is crucial in DSL development as new constructs may be re-
quired as the domain widens and advances.
p u b l i c f i n a l c l a s s ALPH e x t e n d s Dp4 . NTprocedure{

p r o t e c t e d ALPH(i n t i){
t h i s .m= i ;

}
p u b l i c vo id i n i t (Dp4 . T r a n s l a t o r t r a n s l a t o r){

ALPH[] y n t p = new ALPH [1] ;
f o r (i n t i = 0 ; i<y n t p . l e n g t h ; i ++)

y n t p [i]= new ALPH(i) ;
t r a n s l a t o r . i n s t a l l N T (”ALPH” , y n t p [0]) ;
f o r (i n t i = 0 ; i<y n t p . l e n g t h ; i ++){

y n t p [i] . y t r a n s l a t o r = t r a n s l a t o r ;
y n t p [i] . y nt ALPH= t r a n s l a t o r . r eg i s tNT (”ALPH”) ;
y n t p [i] . y n t l a n g = t r a n s l a t o r . r eg i s tNT (” l ang ”) ;
y n t p [i] . y ntp ALPH= y n t p [0] ;

}

}

Listing 2. The ALPH Dynamically Extensible Translator

4.2.3 ALPH Language

The ALPH language itself is comprised of the terminology dis-
cussed in Section 3.1.2. The constructs include tasks and entities
specific to the pervasive healthcare domain. An example of a small
program is illustrated in Listing 3. The constructs in Listing 3 cor-
respond to some of the implemented concepts discussed in Section
3.2. The location indicates that location functionality is required.
This is provided by means of an aspect. The translator generates a
location aspect and according to the language constructs, inserts the
appropriate code into the generated aspect. Some constructs may
trigger the use of code from an available library of aspects that pro-
vide crosscutting ubiquitous concern functionality.
l o c a t i o n changed p a t i e n t

Listing 3. Example ALPH Program

This prototypical implementation is limited in its functionality.
The language itself and the constructs it provides are evolving.
Constructs corresponding to many of the identified domain tasks
and entities in are envisaged as in Listing 4.
d i s c o v e r l o c a t i o n d e v i c e s

c r o s s c h e c k p r e s c r i p t i o n

upda te EHR

c r e a t e HL7 d i s c h a r g e N o t i f i c a t i o n

Listing 4. Example ALPH Program

Discover represents the need for service and device discovery.
Using the DSL construct, the discovery functionality will be in-
cluded in the resulting aspect. Thelocation instruction causes lo-
cation monitoring to be included as discovery will be carried out
within the immediate proximity. The type of discovery that is re-
quired, and the objects that will be returned, are denoted byde-
vices. Thecrosscheck command invokes reasoning and rule based
decision functionality. BothEHR andHL7 objects are available for
creation and manipulation. These constructs illustrate the behav-
iour that can be incorporated using a language that not only offers
higher level domain-specific constructs, but also modularises con-
cerns that crosscut entire applications.

4.2.4 Translated Output

The output delivered following the translation of the DSL con-
structs is, in this example, an AspectJ aspect. The example output is
illustrated in Listing 5. The translation to a concrete GPL is defined
in the formal definition provided to the Depot4 translator genera-
tor. Various definitions to multiple GPLs can be provided enabling
the developer to use a choice of base application development lan-
guages.

p u b l i c a s p e c t l o c a t i o n{
p o i n t c u t changed () : e x e c u t i o n (∗ ∗ p a t i e n t (. .)) ;

Listing 5. Translated Output

4.2.5 Weaving

Weaving is carried out by the aspect languages existing compiler,
in this case AspectJ’s. The translated aspect is weaved into the base
application at the points in execution specified by the appropriate
DSL constructs. As a result the base application executes with the
required pervasive healthcare functionality included.

5. Related Work
MUMPS, also known as M [10] is a DSL developed to enable
healthcare applications access databases and utilise resources ef-
ficiently. It was widely used in the 70’s and 80’s and is still used in
newer implementations today. MUMPS provided database specific
functionality that was useful for its initial purpose of healthcare
applications, however, it did not support enough healthcare spe-
cific abstractions and was used as a database DSL. Bardram and
Christensen [5] propose a middleware for clinical based applica-
tions that addresses many ubiquitous computing concerns including
mobility, heterogeneous devices, discovery and security. However,
it doesnt provide any higher level constructs with more intuitive se-
mantic meaning for the application developer. YABS [11] is a meta-
level domain specific language for pervasive computing. It provides
means for defining and coordinating the behaviour of entities in
pervasive environments. Concerns including mobility and adapta-
tion are addressed. An interpreter takes the defined behaviours via a
script and translates them into intermediate level objects. YABS fo-
cuses on the composition of components in pervasive environments
rather than the provision of a domain-specific language for cross-
cutting concerns. Executable use cases have been used to describe
the requirements for the pervasive healthcare domain [13]. Context-
awareness, propositioning and non-intrusiveness are design princi-
ples that are suggested to be requirements for pervasive application
development. This supports our domain analysis but lacks the pro-
gression to higher level abstractions.

The International Classification of Functioning, Disability and
Health (ICF) [14] is a framework for the classification of health and
disability. It provides a common language for disability description
but is specific to medical terminology and does not address any
technological issues.

6. Conclusions
Pervasive healthcare has many crosscutting domain-specific con-
cerns. DSLs ease application development by providing a level
of abstraction through more expressive domain-specific constructs
[12]. We propose a DSL with constructs that specifically target
domain-specific crosscutting concerns. This removed the need for
the implementation of crosscutting concerns throughout the base
application, increasing modularity. We demonstrate an example im-
plementation of ALPH which uses a translator to transform the
DSL into a chosen target language, in this case, an aspect language.

References
[1] J. Lampe. Depot4 - A generator for dynamically extensible translators.

Software - Concepts and Tools, 19:97-108, 1998.

[2] Neil Loughran et al, A domain analysis of key concerns - known and
new candidates, KUL Leuven, AOSD-Europe Deliverable D43, AOSD-
Europe, February 2006

[3] C. Driver et al, Facilitating Dynamic Schedules for Healthcare
Professionals, 1st International Conference on PervasiveComputing
Technologies for Healthcare, Innsbruck, Austria, 2006, Nov, IEEE.

[4] Jakob Bardram et al, Supporting Local Mobility in Healthcare by
Application Roaming Among Heterogeneous Devices, Lecture Notes in
Computer Science, Volume 2795/2003, 161-176, October 2003.

[5] Jakob E. Bardram, Henrik Brbak Christensen. Middleware for
Pervasive Healthcare, A White Paper. In G. Banavar, editor, Middleware
for Mobile Computing, Heidelberg, Germany, 2001.

[6] J.E.Bardram, T.R.Hansen, M.Mogensen, M.Soegaard. Experiences
from Real-World Deployment of Context-Aware Technologies in a
Hospital Environment. Ubicomp 2006, pages 369-386, CA, USA, Sep
2006.

[7] Chen, H., Perich, F., Finin, T. and Joshi, A. (2004) ’SOUPA: Standard
Ontology for Ubiquitous and Pervasive Applications’, In International
Conference on Mobile and Ubiquitous Systems: Networking and
Services, Boston, MA.

[8] Renato de Freitas Bulco Neto, Maria da Graa Campos Pimentel, Toward
a Domain-Independent Semantic Model for Context-Aware Computing,
la-web , pp. 61-70, 2005.

[9] Wirth, N., What Can We Do about the Unnecessary Diversity of
Notation for Syntactic Denitions? CACM 20: 11, pp. 822 -823 (1977).

[10] Bowie, J., Barnett, G. O. MUMPS–an economical and efficient time-
sharing system for information management. Comput Programs Biomed.
1976. Apr;6(1):11-22

[11] Barron, P. and Cahill, V., YABS: a domain-specific language for
pervasive computing based on Stigmergy 5th International Conference
on Generative Programming and Component Engineering, Portland,
Oregon, USA, October 22 - 26, 2006.

[12] T. Sloane M. Mernik, J. Heering. When and how to develop domain-
specific languages. Technical Report, SEN-E0309, CWI, 2003.

[13] Jrgensen, J. B. and Bossen, C. 2003. Requirements Engineering for
a Pervasive Health Care System. In Proceedings of the 11th IEEE
international Conference on Requirements Engineering (September 08 -
12, 2003). RE. IEEE Computer Society, Washington, DC, 55.

[14] International Classification of Functioning, Disability and Health:
ICF. Geneva: WHO, 2001.

[15] Cysneiros, L. M. 2002. Requirements Engineering in the Health Care
Domain. In Proceedings of the 10th Anniversary IEEE Joint international
Conference on Requirements Engineering (September 09 - 13, 2002).
RE. IEEE Computer Society, Washington, DC, 350-356.

[16] A. Schmidt, M. Beigl and H.W. Gellersen, There is more to context
than location, Computer and Graphics 23(6) (December 1999) 893-901.

