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Éric Tanter ∗

DCC - University of Chile
Blanco Encalada 2120

Santiago, Chile
etanter@dcc.uchile.cl

Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2,

1050 Brussel, Belgium
tjdhondt@vub.ac.be

Abstract
Domain-specific aspect languages (DSALs) bring the well-known
advantages of domain specificity to the level of aspect code. How-
ever, DSALs incur the significant cost of implementing or extend-
ing a language processor or weaver. This raises the necessity of
an appropriate infrastructure for DSALs. This paper illustrates how
the Reflex kernel for multi-language AOP allows for the definition
of DSALs, by considering the implementation of a DSAL for ad-
vanced transaction management, KALA. We detail the implemen-
tation of KALA in Reflex, illustrating the ease of implementation
of runtime semantics, syntax, and language translation.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques

Keywords Domain-Specific Aspect Languages, Reflex, KALA.

1. Introduction
Initial research on AOP focused on domain-specific aspect lan-
guages (DSALs), like RG [14] and AML [10]. DSALs bring all the
well-known advantages of domain specificity to aspect program-
mers, such as conciseness and abstraction. However, this research
has quickly become overshadowed by work on general-purpose
languages, such as AspectJ [12]. Important reasons for this trend
are the following three impediments to the growth of DSALs: the
amount of effort required to implement a new language; the diffi-
culty to extend such an ad-hoc weaver; the inability to combine the
weavers of different DSALs.

The above three impediments can however be addressed through
the use of an appropriate infrastructure for DSALs. This is precisely
the objective of Reflex, a kernel for multi-language AOP [21].
Reflex provides as a base a large number of generic facilities for
the creation of aspects, in addition to which support is included for
detection and resolution of interaction conflicts, and last but not
least, support for language definition and transformation based on
state-of-the art DSL technologies [2].
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This paper shows the design and implementation of a non-
trivial DSAL on top of Reflex. The language is KALA, a DSAL
for advanced transaction management [6, 7], which is significant
in size, complexity, and specific syntax and scoping rules. The
comprehensive discussion of the implementation provided here
furthermore demonstrates how the use of such infrastructure allows
to create a compact yet accessible implementation.

The paper is structured as follows: Section 2 discusses multi-
language AOP and Reflex. Section 3 introduces the domain of
advanced transaction management and KALA. Section 4 gives an
operational description of KALA, and discusses its implementation
in Reflex. Section 5 completes the language implementation by
treating both the KALA syntax definition and the assimilation of
KALA code into Java code for Reflex. Section 6 concludes.

2. Multi-language AOP and Reflex
2.1 Multi-language AOP
In order to be able to define and use different aspect languages, in-
cluding domain-specific ones, to modularize the different concerns
of a software system, we have previously proposed the architecture
of a versatile kernel for multi-language AOP [20] as well as our
current Java implementation, Reflex [21].

A versatile AOP kernel supports the core semantics of various
AO languages through appropriate structural and behavioral mod-
els. Designers of aspect languages can experiment rapidly with an
AOP kernel as a back-end, as it provides a high level of abstraction
for driving transformation. Furthermore, such a kernel is a mediator
between different coexisting AO approaches: it detects interactions
between aspects, possibly written in different languages, and pro-
vides expressive means for their resolution.

The architecture of an AOP kernel hence consists of three lay-
ers: a transformation layer in charge of basic weaving, supporting
both structural and behavioral modifications of the base program;
a composition layer, for detection and resolution of aspect interac-
tions; and a language layer, for modular definition of aspect lan-
guages. It has to be noted that the transformation layer is not nec-
essarily implemented by a (byte)code transformation system: it can
very well be integrated directly in the language interpreter [9]. As
a matter of fact, the role of a versatile AOP kernel is to complement
traditional processors of object-oriented languages. Therefore, the
fact that our implementation in Java is based on code transforma-
tion should be seen as an implementation detail, not as a defining
characteristic of the kernel approach.

2.2 Reflex in a Nutshell
Architecture. Reflex is our Java implementation of a versatile
kernel for multi-language AOP. As such, it follows the architecture
of an AOP kernel [20, 21]:



• The transformation layer is based on a reflective core extend-
ing Java with behavioral and structural reflective facilities. The
model of behavioral reflection is based on that presented in [22],
and explained in more detail next.

• The composition layer ensures automatic detection of aspect
interactions, and provides expressive means for their explicit
resolution [18, 19].

• The language layer is based on the MetaBorg approach for un-
restricted embedding and assimilation of domain-specific lan-
guages [2].

Links. The central abstraction supported at the level of the kernel
to drive behavioral transformation is that of explicit links binding a
set of program points (a hookset) to a metaobject. A link is charac-
terized by a number of attributes, e.g., the control at which meta-
objects act (before, after, around), and a dynamically-evaluated ac-
tivation condition. The aforementioned links are called behavioral
links to distinguish them from structural links, which are used to
perform structural actions [19].

A link can therefore be seen as a primitive aspect, that is, a sin-
gle cut/action pair. Higher-level aspects (a.k.a. composite aspects)
typically consist of several such pairs, and may as well include
structural primitive aspects (e.g. inter-type declarations).

Hooksets. A hookset is specified by defining predicates matching
a reification of program elements, following a class-object struc-
tural model [3]. Reflex is implemented as a Java 5 instrumentation
agent operating on bytecode, typically at load time. During installa-
tion of behavioral links, hooks are inserted in class definitions at the
appropriate places according to hooksets, in order to provoke reifi-
cation at runtime, following the protocol specified for each link.

Metaobjects. A metaobject implements the action associated to
an aspect. In Reflex it can actually be any standard Java object,
whose existence may even precede the actual definition of the link
(e.g. System.out can serve as a metaobject for a link). Reflex
makes it possible to customize the actual protocol between the base
program and metaobjects, on a per-link basis.

3. KALA in a Nutshell
3.1 Advanced Transaction Models
Transactions are the cornerstone of concurrency management in
multi-tier distributed systems. Originally designed to provide con-
currency management for short and unstructured data accesses to
databases, they are however now used outside of this domain. This
observation is not new, and significant research has been performed
to address the shortcomings of classical transactions through the
use of advanced transaction models (ATMS) [5, 11]. An overview
of these advanced models is outside of the scope of this paper. The
most well-known advanced models are nested transactions [15],
which allow a hierarchically structured computation to be matched
to a tree of transactions, and sagas [8], to split a long-lived transac-
tion into a number of shorter steps. We only discuss nested transac-
tions here.

Example: Nested transactions. This model is one of the old-
est and arguably the best-known ATMS [15]. It enables a running
transaction T to have a number of child transactions Tc. Each Tc

can view the data used by T . This is in contrast to classical trans-
actions, where the data of T is not shared with other transactions.
Tc may itself also have a number of children Tgc, forming a tree of
nested transactions. When a child transaction Tc commits its data,
this data is not written to the database, but instead it is delegated to
its parent T , where it becomes part of the data of T . If a transaction
Tx is the root of a transaction tree, i.e. it has no parent, its data is

committed to the database when it commits. Another characteristic
of this model is that if a child transaction Tc aborts, the parent T
is not required to abort, i.e. when it ends it may choose to either
commit or abort.

The ACTA Formalism for ATMS. In addition to a large number
of advanced transaction models –each addressing a specific subset
of the shortcomings of classical transactions– a formalism has
been developed for advanced transaction models. This formalism is
called ACTA [4]. ACTA allows a wide variety of advanced models
to be described formally. An in-depth treatment of ACTA is outside
of the scope of this paper. Suffice it to say that ACTA specifications
for a given model formally describe properties that are exhibited by
transactions in this model.

Towards aspects. From the viewpoint of an application, an ACTA
specification can be seen as formally defining the properties of
the concern of advanced transaction management. This leads us
to aspect-oriented programming. Indeed, transaction management
is a well-known aspect, and a significant amount of work has
already been done to aspectize transaction management [13, 16,
17]. However, none of this work goes beyond classical transactions.
Using the ACTA formalism as a base, we have developed a DSAL
for ATMS: KALA, which we present next.

3.2 KALA: an Aspect Language for Advanced Transaction
Models

KALA is a domain-specific aspect language for the domain of ad-
vanced transaction models, based on the ACTA formalism. KALA
reifies the concepts of the ACTA formal model as statements in the
language. Our implementation of KALA targets Java applications:
a base Java application can be made transactional, using KALA,
with transactions that exhibit the properties of an advanced trans-
action model. An in-depth treatment of KALA, the design process
and the tradeoffs made is provided in [7]; in this paper we solely
provide a brief description of the language using one example pro-
gram fragment for nested transactions.

KALA Programs. A KALA program declares transactional prop-
erties (discussed below) for a number of transactions based on
the life-cycle of a given transaction. As is usual in OO programs
that use of transactions, the life-cycle of every transaction coin-
cides with the life-cycle of a method [6]. The transaction begins
when the method begins, commits when the method ends normally,
and aborts if the method ends with a specific type of exception.
A KALA declaration consists of a signature and body. The signa-
ture identifies a method, and therefore a transaction, possibly us-
ing wildcards, similar to type and method name patterns in As-
pectJ [12].

Consider the KALA code shown in Fig. 1. Line (1) is the KALA
signature, which identifies the transactional methods. As a result,
all data accesses to shared data within these methods (and within
methods called by these methods) are included in the transaction.
To indicate that instances of a given class contain shared data,
i.e. that they are transactional objects, the class must implement
the Resourceable interface. This interface declares one method:
getPrimaryKey(), that should return a unique identifier for the
object.

In the KALA body, transactional properties are declared for this
transaction, and possibly for other transactions. The properties take
effect at given times in the life-cycle of the transaction: properties
can be declared to apply at begin time, commit time and abort
time. This is done by placing these declarations, which are KALA
statements, in a begin block (5)-(6), commit block (7)-(9) and
abort block (10)-(11), respectively. Outside of these blocks, a
number of statements can be placed in the preliminaries (2)-(4).
We shall talk about the preliminaries later.



util.strategy.Hierarchical.child*() { 1

alias(parent Thread.currentThread() ); 2

name(self Thread.currentThread()); 3

groupAdd(self "ChildrenOf"+parent); 4

begin { dep(self wd parent); dep(parent cd self); 5

view(self parent); } 6

commit { del(self parent); 7

name(parent Thread.currentThread()); 8

terminate("ChildrenOf"+self); } 9

abort { name(parent Thread.currentThread()); 10

terminate("ChildrenOf"+self);} } 11

Figure 1. KALA code for children in nested transactions.

Transactional properties. Transactional properties of a method
are declared to apply either at begin, commit or abort time. They
are taken from the ACTA formal model: views, delegation and
dependencies. Each of these properties is reified as a statement in
KALA, respectively view, del and dep statements.

The view property declared in (6) states that the current trans-
action, which is a child transaction, can see the data of its parent
transaction. This property is established when the transaction be-
gins. The delegation property of (7) states that upon commit, the
child transaction delegates its data changes to its parent transac-
tion. This concisely expresses the most important characteristics of
nested transactions as discussed previously.

A dependency statement, dep (5), sets relationships between
points in the life-cycle of two transactions. For example, a de-
pendency can force a transaction to commit if another transaction
aborts (the cmd dependency), it can restrict one transaction to start
only if another transaction has committed (the bcd dependency),
or to start only if another transaction has aborted (the bad depen-
dency). Combinations of dependencies can be used to, for instance,
sequence different transactions. A wide variety of dependencies
have been defined in the ACTA formal model, and are available
in KALA. We do not discuss these in detail here, instead we refer
to [4, 7]. The dependency self wd parent (5) states that if the
parent aborts before this transaction ends, then this transaction will
be forced to also abort. parent cd self states that if the parent
wants to commit, it has to wait until this transaction has ended.

Naming transactions. Dependencies, views and delegation need
to be able to denote the two transactions they affect; therefore there
is a need for a variable binding mechanism. Within KALA code,
such a binding is known as an alias. An alias is looked up through
the use of a global naming service, which is declared using the
alias statement (2). This statement takes as argument the alias
for a transaction, i.e. the variable name, and a Java expression that
evaluates to a key that is used to look up the transaction reference
in the name service. This expression, as well as all expressions we
mention in the remainder of this section, has access to the actual
parameters of the method and to aliases which have already been
resolved. Special cases are the alias self, which is always bound
to the currently running transaction, and the null transaction, which
is the result of a lookup failure. KALA statements which have as
an argument the null transaction fail silently.

Adding transactions to the naming service is performed using
the name statement, which takes as argument an alias and a Java
expression that evaluates to the key for the naming service. In
Fig. 1, the current thread is first used as a key to lookup the parent
transaction (2), then to register the current transaction (overriding
the binding) (3), and finally, upon commit or abort, the parent
binding is restored (8),(10). The scope of aliases within a KALA
declaration follows the usual lexical scoping rules: aliases obtained
in the preliminaries of a declaration are accessible thoughout the

remainder of the KALA code for that declaration; aliases placed in
begin, commit and abort blocks are only accessible there.

Grouping transactions. KALA provides support for named
groups of transactions. A transaction can be added to a group us-
ing the groupAdd statement: (4) adds the current transaction to
the group of children of the parent transaction. All KALA state-
ments have an overloaded behavior for groups, e.g. setting a view
from a transaction to a group of transactions implies setting the
view to each member of the group. The only non-obvious case is
when a group is a destination of a delegation statement. As seman-
tically this has no sense –delegating some changes to a group of
transactions–, a failure is produced. Note that for conciseness in
the remainder of the text, we shall refer to the collection of name,
alias and groupAdd statements as naming statements.

Terminating transactions. Because dependencies may refer to
transactions which have already ended, it is impossible to perform
automatic garbage collection of names and dependency relation-
ships when transactions have ended. Instead the KALA program-
mer is made responsible for such cleanup operations. This is per-
formed through the terminate statement, which takes as argu-
ment a Java expression. This expression is resolved to a name of
the transaction or group of transactions to be collected. Termina-
tion of transactions can be performed within a begin, commit and
abort block. For instance, (9) and (11) state that if a nested trans-
action finishes (by commit or abort), it terminates the group of its
child transactions. Note that if a transaction is terminated when it
has not yet ended, it is immediately forced to rollback.

Autostarting transactions. An important number of advanced
transaction models require that, when some properties are satisfied,
a new transaction is automatically started. An example is the use
of compensating transactions in the Sagas model, which we do not
discuss in details here. Such secondary transactions run outside of
the main control flow of the application, and do not need to be run
in order to have a successful completion of the advanced transac-
tion. KALA provides support for secondary transactions through
the autostart statement: it specifies the signature of the method
corresponding to the secondary transaction to start in parallel, a list
of actual parameters, and optionally a nested KALA declaration
for this transaction. Autostarts are specified in the preliminaries
and their nested KALA code has access to all aliases defined in the
preliminaries, following the rules of lexical scope.

4. ReLAx: Implementing KALA in Reflex
4.1 Operational Description of KALA
In general, transactions are managed at runtime by a component
known as a TP monitor, whose task is to manage concurrent ac-
cesses to shared data: individual transactions notify the TP monitor
of their intent to read or write shared data, and the TP monitor al-
lows or disallows these accesses, to prevent race conditions.

KALA is no exception to this rule. KALA works in close coop-
eration with a TP Monitor, called ATPMos [6]. ATPMos was specif-
ically developed for advanced transaction models and is also based
on the ACTA formalism. At runtime, beyond the normal tasks of
a TP Monitor, ATPMos keeps track of dependencies and view re-
lationships and is able to perform delegation between transactions;
it also provides the naming services required by KALA (naming,
grouping, termination). A detailed discussion of ATPMos is out-
side the scope of this paper (more information is in [6]).

At each point in the life-cycle of a transaction, the responsi-
bilities of KALA therefore are: To instruct ATPMos to place de-
pendencies and views, to perform delegation and termination, and
to coordinate with ATPMos to ensure that dependencies are met.
While a transaction runs, KALA informs ATPMos of all reads and



writes to shared data, before they are performed. Autostarts are en-
tirely managed by KALA; ATPMos provides no specific support
for them: it sees them as normal transactions. The flow chart in
Fig. 2, discussed below, outlines how KALA works.

Preliminaries. First, general setup is performed: obtaining a
unique transaction identifier from ATPMos, and setting up the alias
environment, which keeps bindings for aliases. The environment
is initialized with the binding of self to the obtained transaction
identifier, as well as with the bindings of formal parameters of the
transactional method (as specified in the KALA code) to their ac-
tual values. Alias environments can be nested: if a lookup fails in
an environment, it is performed in the parent, if present.

Next, the naming statements of the preliminaries are executed.
As a rule, all naming is performed at the beginning of a phase, in the
sequence of the statements in the KALA code. Recall that alias
statements add bindings from names to transaction or group identi-
fiers in the alias environment, name statements add these bindings
to the naming service of ATPMos, and groupAdd statements add
transaction identifiers to the grouping service of ATPMos.

Finally, for each autostart statement a thread is defined that
calls the method specified in the autostart statement. This trans-
actional method is parameterized by the KALA body nested in
the autostart, overriding any other KALA declarations for that
method. Furthermore, the current alias environment is given as
a parent environment of the created transaction: this allows the
KALA declarations in the autostart to refer to aliases defined
in the enclosing KALA definition. The autostart thread is started,
and allowed to run until its preliminaries are finished.

Begin. In the begin phase, a nested alias environment is created,
and naming operations are performed. Then, dependencies are set
in ATPMos, as they may impact the begin of an autostart or of the
current transaction. After dependencies have been set, the autostarts
are allowed to proceed with their begin phase.

At this point, ATPMos is asked if, according to the dependen-
cies currently placed on this transaction, it may begin; otherwise,
this call blocks. The call to ATPMos may finally return with three
possible values (Fig. 2): the transaction may be allowed to begin,
or it may be immediately be forced to commit or to abort. The lat-
ter two cases occur if the dependencies currently placed require
immediate commit or abort of the method. If the transaction is al-
lowed to begin, views are set and delegation is performed, ATPMos
is informed that the transaction is about to begin, and termination
is performed. If the transaction must commit or abort, control flow
proceeds in the corresponding phases.

Running. The running phase of the transaction corresponds to
running the code of the method, i.e. the application logic, but with
an interception of all getters and setters of transactional objects.
The interception calls ATPMos to inform it that this shared data is
going to be read or written. This call may block, in order to prevent
race conditions, and may throw a transactional exception, e.g. in
case that a deadlock needs to be broken. If such an exception is
thrown, either by ATPMos, or by the application logic, the control
flow proceeds with the abort phase.

Commit. The commit phase starts with a choice point for the en-
forcement of dependencies, similar to the choice point in the begin
phase. If the transaction may commit, the actions are straightfor-
ward; the only difference with the begin phase is that dependencies
are set after the choice point, because they are considered to hold
only if the transaction actually commits. If it must abort, control
flow proceeds with the abort phase.

Abort. The abort phase is mostly identical to the commit phase.
There are two differences, which we discuss here. First, if the trans-
action is forced to commit due to a dependency, control flow does
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Figure 2. Flow chart of a KALA transaction.

not proceed to the beginning of the commit phase, but it skips the
choice point. This is to avoid loops if a transaction is both forced
to abort and forced to commit because of conflicting dependencies.
Although such a conflict might be a bug in the specification, we
have chosen to let the transaction end instead of letting the applica-
tion loop endlessly [6]. Second, a transactional exception is thrown
to the caller of the method at the end of the phase. This is done to
inform the caller that this transaction ended in an abort, i.e. that the
work expected of this method was not performed successfully. Note
that the caller may also be a transactional method, and hence will
also abort, unless the exception is caught by the application logic.

4.2 Reflex Definitions for KALA
Having discussed the operational description of KALA, we now
give an overview of how this is implemented using Reflex. For sake
of simplicity, we consider a KALA program that only contains one
KALA declaration. This discussion can however straightforwardly
be generalized to programs with multiple KALA declarations.

Declaration links. The cut of a KALA aspect is defined by the
method signature of the declaration. In terms of execution points,
this corresponds to a Reflex hookset matching the execution of the
methods specified by the pattern. The action of a KALA aspect
occurs around the specified methods, and is implemented in a Java
object, called a Demarcator. There is one Reflex link per KALA
declaration, binding the hookset to the demarcator, and specifying



the information that must be passed at runtime: the name of the
method and its actual parameters.

Demarcator. The runtime behavior of KALA programs is imple-
mented in the demarcate method of a Demarcator. This method
is generic for all KALA programs: it just ensures the correct con-
trol flow, following Fig. 2, in interaction with ATPMos. Actions
that are specific to KALA programs are delegated to a number of
KALA configuration objects that reify KALA statements and inter-
pret them, as discussed next. There is one demarcator per KALA
declaration: a demarcator is instantiated with 8 configuration ob-
jects, as well as with the list of formal parameters of the transac-
tional method. A Demarcator is reentrant, i.e. it is shared between
all running instances of a given KALA declaration.

Configuration objects. There are three categories of configura-
tion objects, corresponding to different KALA statements:

• Transactional properties are a simple reification of depen-
dencies, views and delegation statements as structured data. A
KProps object is a triplet of bi-dimensional string arrays, one
per kind of property. For instance, the statement dep(self wd
parent) is represented as an array {"self","wd","parent"},
within the array of dependencies. The actual interpretation of
these values consists in looking up the identifiers in the alias en-
vironment, then calling ATPMos to set the property (if a group
is involved, the property is set for each member of the group).
Lookup failures are reported as errors and no action is taken.

• Naming evaluators are objects interpreting a number of nam-
ing and termination statements. Naming and termination state-
ments are not pure data, they include expressions that need
to be evaluated at runtime, including identifiers that must be
looked up in the alias environment. Therefore a set of naming
and termination statements is represented as a dedicated Java
class implementing their expressions. This class is a subclass
of NamingEval, which defines generic evaluation and lookup
mechanisms.

• Autostarts are represented as runnable objects of a subclass of
AStart, whose run method calls the method indicated in the
autostart statement. The values for arguments to this method
call are looked up in the alias environment. Furthermore, the
AStart object sets the Demarcator object of the method that
it calls to a new metaobject. This new object is configured by
the nested KALA declaration of the autostart and the alias envi-
ronment it contains has as parent the current alias environment.

A Demarcator is initialized with four pairs of configuration ob-
jects, one for each of the sections of a KALA declaration: a nam-
ing evaluator and autostarts for the preliminaries, and for begin,
commit and abort blocks a naming evaluator and a transactional
properties object. A Reflex link is created using the parameterized
demarcator as metaobject, and with the appropriate attributes.

Transactional objects. In addition to the above, KALA includes
a secondary aspect: that of intercepting executions of getter and
setter methods of classes that implement the Resourceable in-
terface. This aspect is implemented as a single link, binding a
hookset matching the above executions to other methods of the
Demarcator (preWrite and preRead). These methods simply in-
form ATPMos of reads and writes to shared data, as discussed pre-
viously. Because these methods are stateless and reentrant for all
KALA programs, the link is installed only once, when the first
KALA program is being woven.

5. Definition and Assimilation of KALA
After this informal discussion of both the operational semantics of
KALA and the way it is supported in Reflex as a framework, we

module Kala imports Java-15-Prefixed Pattern 12

exports context-free syntax
KDecl* -> CompilationUnit 13

FQMPattern KBody -> KDecl 14

"{" Prelim? BeginBlock?
CommitBlock? AbortBlock? "}" -> KBody 15

PrelimStm* -> Prelim 16

"begin" "{" BlockStm* "}" -> BeginBlock 17

"commit" "{" BlockStm* "}" -> CommitBlock 18

"abort" "{" BlockStm* "}" -> AbortBlock 19

AStartStm -> PrelimStm 20

NamingStm -> PrelimStm 21

NamingStm -> BlockStm 22

DepStm -> BlockStm 23

ViewStm -> BlockStm 24

DelStm -> BlockStm 25

TermStm -> BlockStm 26

"autostart" "(" MethSig ASActuals
KBody ")" ";" -> AStartStm 27

"alias" "(" KBinding ")" ";" -> NamingStm 28

"name" "(" KBinding ")" ";" -> NamingStm 29

"groupAdd" "(" KBinding ")" ";" -> NamingStm 30

"dep" "(" JavaId JavaId JavaId ")" ";"-> DepStm 31

"view" "(" Min? JavaId JavaId ")" ";" -> ViewStm 32

"del" "(" JavaId JavaId ")" ";" -> DelStm 33

"terminate" "(" JavaExpr ")" ";" -> TermStm 34

JavaId JavaExpr -> KBinding 35

Figure 3. Syntax definition of KALA in SDF.

present how the actual KALA language is defined in our infras-
tructure. This includes the concrete syntax definition, as well as the
automatic transformation of a KALA program into Reflex configu-
ration code in plain Java (a process called assimilation).

5.1 Declarative Syntax Definition
The syntax definition of KALA is performed using SDF, a modular
syntax definition formalism [24]. Fig. 3 shows the syntax definition
of KALA in SDF: it is defined as an SDF module importing the Java
5 syntax as well as a module for pattern syntax (taken from the SDF
definition of AspectJ [1]), shown in line (12). SDF productions are
declared in the reverse manner from the traditional BNF notations,
as illustrated in Fig. 3 where (13) states that a number of KALA
declarations are valid as a CompilationUnit non-terminal. This
non-terminal is the root of the Java language SDF definition, there-
fore we are actually extending the Java language with the KALA
syntax. Note that although this allows Java and KALA code to be
mixed in one file, the KALA assimilator presented below only pro-
cesses KALA code.

A KALA declaration consists of a fully-qualified method pat-
tern followed by a body (14); a KBody is made up of 4 optional
sections (15): preliminaries, begin block, commit block, and abort
block. Preliminaries are a list of PrelimStm (16), while blocks are
made up of BlockStm (17)-(19). A PrelimStm can be either an
autostart (20) (defined on line (27)), or a naming statement (21). A
naming statement is also valid as a BlockStm (22), along with de-
pendency, view, delegation, and termination statements (23)-(26).
A naming statement can either be an alias (28), a name (29), or
a groupAdd (30). These statements include binding expressions,
binding a Java identifier to an expression (35). Dependency, view,
delegation, and termination statements also make use of the im-
ported Java non-terminals JavaId and JavaExpr (31)-(34).

5.2 Reflex Code Generation
With the SDF definition above, the MetaBorg toolset generates
a parser for KALA that produces an abstract syntax tree in the
ATerm format [23]. The actual AST nodes that are produced for



AssimKDecl : 36

KDecl(meth, KBody(prelim, begin, commit, abort)) ->
|[ Hookset ~hs = ~<AssimMethSig> meth ; 37

String[] ~formals = ~<AssimFormals> meth; 38

NamingEval ~pre-nts = ~<AssimNTs> prelim; 39

AStart[] ~as = ~<AssimAStarts> prelim; 40

NamingEval ~b-nts = ~<AssimNTs> begin; 41

KProps ~b-props = ~<AssimProps> begin; 42

// ...same for commit and abort blocks...
this.install(~hs, ~formals, ~pre-nts, ~b-nts, 43

~b-props, ~c-nts, ~c-props, ~a-nts, ~a-props); ]|
where <newname> "hs" => hs 44

; // etc. for all variable names

Figure 4. Rule for assimilating a KALA declaration.

the non-terminals of the grammar are specified using constructor
declarations, omitted here for conciseness. The AST is then pro-
cessed by an assimilator defined declaratively using the Stratego
language [25]. By defining assimilation rules, KALA declarations
are converted into Reflex configuration code, in plain Java.

Assimilating declarations. Fig. 4 shows the main assimilation
rule, which deals with KALA declarations. An assimilation rule
has a name (36), and specifies how a term (AST node) matching the
pattern on the left-hand side is transformed into the right-hand side.
We make use of the embedding of Java within Stratego, so the result
of the transformation is directly written in Java code between the |[
and ]| separators [2]. Within this block, metavariables are referred
to using the ~ escape. A where clause (44) can be specified for
applying further rules to some elements and bind them to variables
which can be used in the right-hand side of the rule.

The assimilation rule of a KALA declaration generates the
hookset, the formal parameters array, and the configuration objects
that are needed to create the corresponding link. An install
method is then called, creating and installing the link (43). These
statements are inserted in the initialization method of a generated
configuration class.

We generate one configuration class per KALA source file. A
single source file can of course contain more than one declaration,
resulting in a Reflex configuration class that installs more than one
parameterized link.

Assimilating parameters. The different configuration objects in
Fig. 4 are denoted by an identifier in order to refer to them when
calling the install method (43). To ensure hygiene, identifiers
are automatically generated by Stratego. This is why the hookset
variable in (37) is the metavariable ~hs, which is determined in the
where clause of the rule, which applies the <newname> utility rule
to the "hs" symbol (44). The result of this transformation is then
bound to the variable we use in the Java code. This means Stratego
will generate hookset variable names hs 0, hs 1, etc., as needed.

Line (37) specifies that the right-hand side of the assignment
for the hookset is obtained by applying the AssimMethSig rule to
the meth term (the AST node representing the method signature).
The list of formal parameters of the method is also obtained by
applying a rule to this same term (38). Following this, the eight
configuration objects (Sect. 4.2) needed are obtained via applica-
tion of dedicated rules: the preliminary naming statements (39), the
autostart objects (40), the naming and termination statements of the
begin block (41), its transactional properties (42), etc.

Assimilating properties. Statements that deal with transactional
properties –i.e. dependencies, views and delegation– are assimi-
lated into a configuration object KProps (Fig. 5). A KProps object
is a bi-dimensional array of strings, as explained in Sect. 4.2. The
creation of this array is shown in (45); the content of each column in

AssimProps :
stms ->
|[ new KProps(new String[][]{~deps }, 45

new String[][]{~views},
new String[][]{~dels }) ]|

where <try(filter(AssimDep))> stms => deps 46

; <try(filter(AssimView))> stms => views 47

; <try(filter(AssimDel))> stms => dels 48

AssimDep : 49

DepStm(Id(src), Id(dep), Id(dest)) ->
var-init |[ { "~src", "~dep", "~dest" } ]| 50

// similar for views and delegation

Figure 5. Rule for assimilating transactional properties.

AssimNTs :
stms ->
|[ new NamingEval(){ 51

void evalNaming(KALAEnv e,TxManager t){~n_stms} 52

void evalTerm(KALAEnv e,TxManager t){~t_stms}} ]| 53

where <try(filter(AssimNaming))> stms => n_stms 54

; <try(filter(AssimTerm))> stms => t_stms 55

AssimNaming :
NameStm(KBinding(Id(id), expr)) ->

|[ this.nameOp(e, t, "~id", ~expr_ok); ]| 56

where <topdown(try(LookupId))> expr => expr_ok 57

// similar for alias and groupAdd statements
AssimTerm :
TermStm(Term(expr)) -> 58

|[ this.terminateOp(e, t, ~expr_ok); ]|
where <topdown(try(LookupId))> expr => expr_ok

LookupId :
ExprName(Id(id)) -> |[ e.lookup("~id") ]| 59

Figure 6. Rules for assimilating naming and termination.

this configuration object is obtained via applying other assimilation
rules, one for each type of property: dependencies (46), views (47),
and delegation (48). The use of the try and filter strategies en-
sures that the rule is applied to all terms (the statements) and that
the process goes on if a term does not match. Fig. 5 shows the
assimilation rule for dependencies (49): if a statement is a depen-
dency, it is assimilated into a variable initializer with the three cor-
responding values (source, dependency, and destination) (50).

Assimilating naming and termination. Naming and termination
are more complex statements to assimilate (Fig. 6), because they
directly relate to the scope of identifiers in KALA. For each part
of a KALA declaration (preliminaries, begin, commit and abort),
a NamingEval object is created and passed as parameter to the
Demarcator (recall Sect. 4.2) (51). A naming evaluator has two
methods, evalNaming and evalTerm, which are filled in with
statements generated by the assimilation of naming (52) and termi-
nation (53), respectively. The application of these assimilations is
defined in the where clause of the main assimilation rule (54)(55).

As an example, Fig. 6 shows the case of a name statement (the
operation is similar for alias and groupAdd). The generated state-
ment is a call to the nameOp method defined in the superclass
NamingEval, which takes as parameter the current environment
and transaction manager, the name to bind, and the expression to
which the name should be bound (56). Note however that the ex-
pression is processed in order to replace all occurrences of identi-
fiers with a lookup for the identifier in the alias environment (57).
This is because a naming statement can include aliases and formal
parameters of the method (recall Sect. 3.2); these names are not
valid in the generated Java method, so they are transformed into



an alias environment lookup expression (59). The assimilation of a
termination statement is very similar (58).

6. Conclusions
In this paper we have detailed the implementation of KALA, a
DSAL for advanced transaction management in the Reflex kernel
for multi-language AOP. We first provided an operational descrip-
tion of KALA and gave an overview of its implementation over
Reflex as a generic object parameterized by a collection of config-
uration objects. We then described how KALA programs are trans-
lated into the required configuration objects, giving the full KALA
syntax definition and an overview of how code generation is per-
formed, using SDF and Stratego.

Contrast this with the original proof-of-concept implementa-
tion of KALA, based on source-code transformation. The concrete
grammar was defined using a yacc-like parser generator, and re-
quired 130 lines of code. The SDF definition is 4 times more com-
pact (32 lines, Fig. 3). With respect to semantics, the original source
code transformation engine consists of approximately 1200 lines
of code, not counting the Java parser used. The ReLAx imple-
mentation consists of 150 lines of Stratego rules, and 500 lines of
Java code. This illustrates the advantages we gained with respect to
amount of code that needs to be written and maintained.

Furthermore this paper demonstrates that, while being compact,
the implementation is accessible enough that it can be explained in
reasonable detail in the scope of a few pages. This is thanks to the
use of an appropriate infrastructure, in this case Reflex.
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