
Post Facto Type Extension for Mathematical Programming

Stephen M. Watt
Department of Computer Science

University of Western Ontario
London ON, Canada N6A 5B7

watt@csd.uwo.ca

Abstract
We present the concept of post facto extensions, which may be used
to enrich types after they have been defined. Adding exported be-
haviours without altering data representation permits existing types
to be augmented without renaming. This allows large libraries to be
structured in a clean, layered fashion and allows independently de-
veloped software components to be used together. This form of type
extension has been found to be particularly useful in mathematical
software, where often new abstractions are applicable to existing
objects. We describe an implementation of post facto extension, as
provided by Aldor , and explain how it has been used to structure a
large mathematical library.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Methodologies; D.3.2 [Pro-
gramming Languages]: Language Classifications—Specialized ap-
plication languages; D.3.3 [Programming Languages]: Language
Constructs and Features; I.1.3 [Symbolic and Algebraic Manipu-
lation]: Languages and Systems—Special-purpose algebraic sys-
tems

General Terms Design, Languages

Keywords Aldor, Axiom, Aspect-oriented programming, Sym-
bolic computation, Computer algebra

1. Introduction
As software libraries are extended and combined, it is often de-
sirable to view values of pre-existing types as instances of more
general abstractions defined later. This leads either to defining a
host of conversions, or to re-writing libraries. Conversions may be
either implicit or explicit, but in either case the programmer must
be aware of them and use compilers that can optimize them. Re-
writing libraries to endow pre-existing types with later-defined se-
mantics is time-consuming and decreases modularity.

This paper presents a programming language solution to this
problem. The solution, “post facto extension,” is a specialized in-
stance of what is today known as aspect-oriented programming, and
it has proven highly effective in structuring mathematical libraries

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DSAL 2006 Portland OR, USA.
Copyright c© 2006 ACM XXX-XXXXXXX-XX. . . $5.00.

for Aldor [1, 2, 3, 4]. Language support for post facto extension can
be readily added to object oriented or abstract datatype program-
ming languages without the complexity of full support for general
aspect-oriented programming.

This work has been motivated by the design of software for
computer algebra, an area concerned with answering mathematical
problems in terms of symbolic expressions rather than numbers.
In mathematics, as in software development, one of the principal
activities is that of generalization. By expressing problems more
abstractly, it is possible to make greater re-use of previous work.
From this point of view, it is quite natural to view previously de-
fined quantities as special instances of newly defined abstractions.

A simple example illustrates this point: Suppose we are de-
veloping a library, and one of the types is Integer. We provide
this type with the basic arithmetic operations, +, −, ×, =, <,
etc. Later, gcd and lcm are added to the library. Should the type
Integer be modified to export these operations, or should they
remain as independent functions? If additional arithmetic types are
added, it may be desirable to add a Ring abstraction, from which all
types with suitable arithmetic can inherit. Types that could provide
the Ring interface include square matrices, polynomials, quotient
fields, complex numbers and the integers. Should Integer be mod-
ified to export Ring? If Integer is not modified, then Integer
values cannot be used where elements of a Ring are required. It
is then necessary to introduce a new type and provide conversions.
As more abstractions are added, many conversions are used either
explicitly or implicitly and code becomes cumbersome and ineffi-
cient. If Integer is modified, then a new dependency is created and
previously complete components must be re-tested. It is also possi-
ble that adding this behaviour to the type will break third-party uses
of the library. When more than one library is involved, this problem
is exacerbated.

The problem of dealing with new abstractions for existing ob-
jects is by no means restricted to mathematical computation. It
arises whenever multiple libraries provide different functionality
for basic types in an object-oriented environment. An example
would be when different libraries provide string manipulation, reg-
ular expression matching and higher-level text operations. Situa-
tions such as this are now well-understood in the aspect-oriented
programming community. We have found this problem to be par-
ticularly acute in the construction of computer algebra software: In
this setting, it is the usual case that most basic types are instances
of many later-defined abstractions. Moreover, since there is wide
agreement on numerous mathematical abstractions, it is quite nat-
ural to expect the objects of one library to simply work in other
libraries.

The situation where we first noticed the problem was in the con-
struction of libraries for the Axiom [5] computer algebra system.
Given that the basic arithmetic types needed to participate in ad-
vanced mathematical operations, there seemed to be no way to de-

fine a fixed core language with a few basic types and an evolving
library of advanced functionality. During this period, the present
author was responsible for the design and implementation of the
programming language to be used for libraries to extend the Axiom
system. We were thus in the fortunate position to consider program-
ming language solutions to problems that arose in library design.

Our solution to the problem of dealing with new abstractions
for existing components relies on a key observation: Although
it is desirable to add new interfaces to mathematical types after
they have been defined, it is usually not desirable to change the
representation of values. We found it was almost always the case
that any new operations required by the new interfaces could be
defined in terms of existing exported behaviour without any change
to the object representation. This led to the idea that existing values
could participate in new interfaces without any changes to the
objects at all. Instead, higher-order operations on the types could
add the desired behaviours. This is the basic idea of what we call
“post facto extension” of types.

We have explored this idea in our design of the Aldor program-
ming language and have found it to be quite effective in cleanly
structuring complex mathematical libraries with many rich rela-
tions among the types. In Aldor , the expression of post facto exten-
sions is quite simple. From the programmer’s point of view, there
is little required to use them effectively. We believe that these ideas
may prove useful in areas outside of mathematical programming
and therefore should be more widely known.

This paper presents the main ideas of post facto type extension
and describes how it has been used to structure complex libraries:
Section 2 outlines the main ideas of Aldor and its type system. Sec-
tion 3 describes structural problems that were observed in building
mathematical libraries for Aldor . Section 4 then presents our so-
lution, post facto extensions. Section 5 explains some of the ways
that post facto extensions can be used in structuring large libraries.
We present our conclusions in Section 6.

2. Aldor and Its Type System
Aldor [1, 2, 3, 4] is a programming language originally intended to
provide compiled libraries for computer algebra. The design of the
language tries to balance high-level mathematical expressivity with
the possibility of compilation to efficient machine code so large
symbolic and numeric problems can be treated. There are several
aspects to the Aldor language that are intended to provide support
for mathematical programming, but which are somewhat unusual.
We outline these below.

Types and functions are first-class values. This means that they
may be created and used dynamically, providing representations for
mathematical sets and functions.

The type system has two levels. Each value belongs to some
unique type, known as its domain, and the domains of values can
be delcared statically. Domains themselves belong to the domain
Type. Domains may additionally belong to type categories that
specify additional properties. In particular, categories may spec-
ify that a domain must export certain operations or that some op-
erations have default implementations. Categories fill the role of
interfaces or abstract base classes of other languages, and may be
viewed as sub-types of the domain Type. Category membership can
be asserted at compile time and tested at run time.

The language is not object-oriented. There are a number of as-
pects of object-oriented programming that make it awkward to use
in an algebraic setting:

The first problem is that object-oriented languages favour a
programming style where objects maintain state and the execution
of a program consists of calling methods to change that state.

Mathematical programming is more suited to a functional style,
where one works with values and functions compute new values
based on their arguments and where values are seldom, if ever,
modified.

The second problem is that, in an object-oriented world, binary
operations do not inherit in a natural way. In mathematics it is quite
common to have functions that are homogeneous on their argu-
ments, for example +, ×, −, = and <. To illustrate the difficulty
with object-oriented inheritance, suppose we have a base class B
with a method plus, used as a.plus(b) to add a value of type B
to an object of type B and yielding new value of type B. That is,
plus : B × B → B. If class D is derived from class B then it
will have plus : D × B → B. This problem was already noted
by Barbara Liskov as arising in the design of CLU [6] and is cited
as one of the reasons that the language was based on abstract data
types rather than objects.

The third problem is related to the second. Class-based inheri-
tance does not provide sufficient static type checking for multiple-
argument functions. To illustrate, suppose that a base class B pro-
vides the abstraction of multiplication × : B × B → B and that
classes D1 and D2 are derived from it. We wish to ensure statically
that the multiplications D1 × D1 and D2 × D2 are allowed, but
that the multiplications D1 × D2 and D2 × D1 are disallowed.
In an object-oriented world, however, the inhomogeneous multipli-
cations would be allowed by virtue of the inherited multiplication
defined in class B.

An example can illustrate this last point. In Aldor one can define
a category Semigroup to capture the abstraction of a homogeneous
multiplication, and the domains DoubleFloat and Permutation
could be declared to belong to this category.

Semigroup: Category == with { *: (%, %) -> % }
DoubleFloat: Join(Semigroup, ...) == ...
Permutation: Join(Semigroup, ...) == ...

This causes the declared domains to export a suitable multiplica-
tion. For example, DoubleFloat will have an exported operation
“*” that takes two DoubleFloat values and returns a third. If x and
y are declared to be of type DoubleFloat and p and q are declared
to be of type Permutation, then it will be possible to multiply x*y
and p*q, but not x*p. This difference may be summarized by the
following relations:

x, y ∈ DoubleFloat ⊂ Semigroup
p, q ∈ Permutation ⊂ Semigroup

ff
OOP

x, y ∈ DoubleFloat ∈ Semigroup
p, q ∈ Permutation ∈ Semigroup

ff
Aldor

In an object orient world x and p belong to a common inherited
class, but in Aldor they do not.

Dependent types are fully supported. Aldor obtains the capabil-
ities of object-oriented programming through the use of dependent
types. Tuples may have components whose value determines the
type of other components and mappings may have return types that
depend on the values of parameters. As an example, consider the
following declaration:

f: (n: Integer, m: SquareMatrix(n, Integer))
-> List IntegerMod(n)

Here we suppose that SquareMatrix(n, Integer) is the type of
n×n square matrices with integer entries and that IntegerMod(n)
is a type representing the integers modulo n. The types of the
second argument and of the return value of f depend on the value
of the first argument. If the first argument is 3, then the second
argument must be a 3 × 3 matrix and the result will be a list of
integers modulo 3.

Dependent types are particularly useful when some of the com-
ponents are themselves types. For example, we may define

prodl: List Record(S: Semigroup, s: S) == [
[DoubleFloat, x],
[Permutation, p],
[DoubleFloat, y]

]

Here each element of the list consists of a type and a value belong-
ing to that type. By specifying that the type belong to a particular
category, we are able to determine statically what operations are
supported on the values. In Aldor , use of dependent types and in-
heritance in the category hierarchy take the place of objects and
inheritance in the class hierarchy.

Parametric polymorphism is provided by category- and domain-
producing functions. With types as first class values and depen-
dent types fully supported, functions producing types take the place
of templates in other languages. For example we may write

define Module(R: Ring): Category == Ring with {
*: (R, %) -> %

}

Complex(R: Ring): Module(R) with {
complex: (%, %) -> R;
real: % -> R;
imag: % -> R;
conjugate: % -> %;
...

} == add {
Rep == Record(real: R, imag: R);
...

}

Here, Module is a function that take a type parameter, R, belong-
ing to the category Ring and returns a category as its result. The
form Ring with {*: (R, %) -> R} constructs the category to
be returned as being the category Ring extended with one addi-
tional operation. The symbol % in the category expression refers to
the domain that exports the category. If D: Module(T), then D ex-
ports *: (T, D) -> D. The keyword define affects the publicly
visible information about Module that will be visible about compi-
lation units. It allows not only its type, (R: Ring) -> Category,
but also its value, (R:Ring) +-> Ring with {*:(R,%) -> %},
to be publicly visible.

The second definition declares Complex to have a dependent
mapping type, (R: Ring) -> Module(R) with.... That is,
Complex takes a type-valued parameter R that belongs to the cat-
egory Ring and returns a type-valued result that belongs to the
category Module(R) with.... The body of the function defini-
tion (the part after “==”) is a form that constructs a domain.

Category- and domain-producing expressions may be condi-
tional. Aldor provides conditional inheritance, allowing types
to be formed differently according to run-time conditions. For ex-
ample, we may write

UnivariatePolynomial(R: Ring): Module(R) with {
coeff: (%, Integer) -> R;
monomial: (R, Integer) -> %;

if R has Field then EuclideanDomain;
...

} == add {
...

}

That is, if the type parameter R to UnivariatePolynomial not
only belongs to the category Ring but also belongs to the category

Field, then the type UnivariatePolynomial(R) also belongs to
the category EuclideanDomain.

Post facto extensions. Aldor allows domains to be extended to
belong to new categories after they have been initially defined.
These allow domains to be defined in a layered fashion, separating
issues and eliminating dependencies, while providing rich function.
These are the focus of the present paper and are described in more
detail in Section 4.

Aldor grew out of an earlier language by Jenks and Trager [7]
that already used the idea of domains and categories. This lan-
guage was the original library language for the Axiom system
(then known as Scratchpad II), and inspired a number of other
projects for computer algebra languages, including Newspeak [8]
and Views [9].

3. Problems in Library Design
We now describe a certain problems that we observed in building
the first Aldor libraries. We describe some of these problems using
the terminology of Aldor , but their translation into other program-
ming languages should be straightforward. Later we show how
these problems are solved with post facto extensions.

Old domains and new categories. We can now revisit the exam-
ple of the introduction using more precise language: In building
libraries for mathematical computation, it is quite normal to define
new categories and to find that existing domains could be made to
belong to them. Many of the most basic types, such as Integer,
IntegerMod(p), Fraction(R), Complex(R), Matrix(n,m,R)
and UnivariatePolynomial(R), have a wealth of mathematical
properties and are often potential instances of newly defined cat-
egories. The same thing is true for floating point types if one is
willing to overlook the fact that they are not exactly associative.

In building the basic Aldor libraries, there was the choice of
whether to modify these basic domains to belong to all the ap-
plicable categories defined in the standard libraries, or whether to
maintain modularity. On the one hand, even within the standard li-
braries, modularity was desirable. Certain types, such as Integer
and Boolean must be known in the language definition and it
would be injudicious to therefore have to fix an intricate hierarchy
of algebraic categories as part of the basic language. Even if these
basic domains were modified to belong to all the applicable cate-
gories in the standard libraries, then the problem of membership in
categories from new libraries would still exist. On the other hand, if
the basic domains were not made to belong to the categories of the
standard libraries, then values belonging to these domains could not
be used by any of the advanced functions. The solution of having
a basic and an elaborated version of each type would lead to code
filled with distracting explicit conversions or subtly dangerous im-
plicit conversions.

Difficulties with multiple libraries. Commonly, application must
work with objects that inherit from base classes or interfaces from
independent libraries. There is the problem, however, that objects
returned by methods of one library are not suitable for use in calls
to methods of other libraries. One solution is for the application to
build its objects as compound structures containing component ob-
jects from the separate libraries. In this case conversions and con-
structors are used to move between the types. Sometimes an ap-
plication will define a new base class for its hierarchy that inherits
from both libraries as a way to deal with this situation. Then clients
of the application that require yet other third libraries must repeat
the process. This is really just another instance of old types lacking
new interfaces. except in this case the interfaces come from sepa-
rate libraries and there is no real possibility of integrating the set of
types.

Large dependency sets in libraries. In many programming lan-
guages dependencies can arise among components because types
refer to each other in their definitions. In Aldor and certain other
languages, dependencies can also arise because types refer to each
other in their type. We give a simple example. Suppose we have the
following declarations:

define AbelianGroup: Category == with {
+: (%, %) -> %;
*: (Integer, %) -> %;
...

}

define DifferentialRing: Ring with {
diff: % -> %;

}

Integer: Join(DifferentialRing, ...) == ...

That is, the domain Integer is declared to (trivially) belong to
the category DifferentialRing so that it be possible to con-
struct differential operators and other structures with integer co-
efficients. The problem is that the type Integer appears in the def-
inition of AbelianGroup. Because of this, all domains that belong
to AbelianGroup have an indirect and undesired dependency on
DifferentialRing.

In compiling programs we may wish to verify that expressions
have well-defined type, to verify that types are well-formed and
to perform type inference. The dependencies that arise through the
types of types can lead to large systems requiring fixed-point analy-
sis. This not only imposes technical constraints on the type system,
it also requires careful compiler design to avoid long compilation
times for simple programs.

This form of dependency has been seen to be a practical prob-
lem. In the design of the Axiom system, basic mathematical types
were endowed with all appropriate advanced algebraic interfaces.
This led to an almost complete inter-dependency among the inter-
face specifications. Doing a complete type checking of the library
interfaces took several days, and this led to a reluctance to modify
the library.

Complex conditionalization. While conditional category mem-
bership is one of the more useful features of the Aldor language
and its predecessors, it is also subject to difficulties when new cat-
egories are used. We illustrate this with the domain-constructing
function DirectProduct(n, S) which constructs the type of n-
tuples of values from the type S.

DirectProduct(n: Integer, S: Set): Set with {
component: (Integer, %) -> S;
new: Tuple S -> %;

if S has Semigroup then Semigroup;
if S has Monoid then Monoid;
if S has Group then Group;
...
if S has Ring then Join(Ring, Module(S));
if S has Field then Join(Ring, VectorField(S));
...
if S has DifferentialRing then DifferentialRing;
if S has Ordered then Ordered;
...

} == add {
...

}

Here we see that the set of categories satisfied by DirectProduct(n,
S) depends very much on the categorical properties of the ar-
gument S. The direct product inherits from many, but not all, of
the categories satisfied by S. For example, if S is a Monoid, then
so is DirectProduct(n,S). The same is true for many other

categories. Sometimes DirectProduct(n,S) does not belong
to the categories satisfied by S. For example, if S is a Field
then DirectProduct(n,S) is not. Sometimes the opposite is
true: sometimes DirectProduct(n,S) belongs to additional cat-
egories by virtue of the categorical properties its argument. This
occurs, for example, when S is a Ring.

This example serves to make two points: First, we see that
the categorical properties of a domain-constructing function can
be quite complex and depend very much on the specific nature of
the type constructor — it is not possible to describe this behaviour
with a few simple universal rules. Second, we see that certain con-
structors are open-ended in their conditionalization requirements
— whenever new categories are added to the environment, it is
likely the constructor should be augmented.

4. Post Facto Extensions
Our solution to the problems we have outlined is to provide a
mechanism for domain-valued expressions to have their meaning
augmented with additional categories. This is achieved by allowing
names bound to domains and domain-producing functions to have
additional definitions and by providing rules by which the multiple
meanings visible in a given scope are to be combined. We explicitly
note that the representation of values belonging to the augmented
domains does not change. All that is different is that the domain to
which they belong is made to belong to additional categories, and
consequently support more operations.

Extending domains. If D is a domain-valued constant, then its
meaning may be extended with a definition of the form

extend D: C == E

This declares the D to belong to the category given by C in
addition to whatever other categories it belongs in the current
scope. In general, belonging to this new category may require D to
provide new exports. The expression E gives the implementation
of these new exports in terms of previously exported operations.
The keyword extend is required so that the definition is not taken
to be an independent, overloaded meaning.

To illustrate, the domain Integer may be made to belong
to the category DifferentialRing by providing the following
extension

extend Integer: DifferentialRing == add {
diff(n: Integer): Integer == 0;

}

Separately, Integer may be made to belong to the category
ConvertibleTo(MathML) by providing the extension

extend: Integer: ConvertibleTo(MathML) == add {
convert(n: Integer): MathML == mi(n)

}

Named domains can in this way have different behaviours added as
needed. When an existing domain is used with a new library, then
a set of extensions can be provided to make the domain belong
to whichever categories are desired. The programmer is free to
organize the extensions in any suitable manner. In a scope where a
domain-valued constant is used, its type is taken to be the Join of
all the categories of the visible extension definitions and its value
is taken to be the add of all the expressions from the extension
definitions. That is, if the visible definitions are

N: C0 == A0;
extend N: C1 == A1;
...
extend N: Cn == An;

then the domain used will be formed as

N: Join(C0,C1,...,Cn) ==
A0 add A1 add ... An add {}

Extending functions. Domain-producing functions may be ex-
tended by providing an additional function definitions, marked with
extend. An extension of a domain-producing function must have
arguments with the same domains as the corresponding arguments
of the original function. Normally, however, one or more of the ar-
guments will have different subtype properties. (This includes the
case where domain-valued arguments are declared to belong to dif-
ferent categories.) The declared return type of the extension func-
tion is taken to be an additional category to which the resulting
domain will belong. To illustrate, we rewrite the DirectProduct
example using extensions as shown in Figure 1. It would not nor-
mally be the case that the extensions would be given together as
shown here. More often the extensions would either be placed to-
gether with the category definitions or be grouped in some way
(e.g. extensions necessary to make domains of library 1 work with
library 2).

In a scope where a domain-producing function constant is used,
the original function value and all of the visible extensions are com-
bined to produce the function that is actually used. This allows
proper behaviour of function-valued names. So, for example, ex-
tended domain-producing functions may be passed as parameters,
saved as values etc, and later used as desired.

If the visible function definition and extensions for F are

F(a1: T01,...,ak: T0k): R0 == A0
extend F(a1: T11,...,ak: T1k): R1 == A1
...
extend F(a1: Tn1,...,ak: Tnk): Rn == An

this is equivalent to the definition

F(a1:Meet(T01...Tn1),...,an:Meet(T0k...Tnk)): with {
if a1 ∈ T01 and ... and ak ∈ T0k then R0;
if a1 ∈ T11 and ... and ak ∈ T1k then R1;
...
if a1 ∈ Tn1 and ... and ak ∈ Tnk then Rn;

} == add {
if a1 ∈ T01 and ... and ak ∈ T0k then A0;
if a1 ∈ T11 and ... and ak ∈ T1k then A1;
...
if a1 ∈ Tn1 and ... and ak ∈ Tnk then An;

}

Here the symbol “∈” is interpreted to be a subtype test for the
corresponding base domain. In particular, when Tij is a category
“∈” means “has.” If T0i = T1i = · · · = Tni then the i-th test can
be omitted.

These rules are applied recursively, with suitable interpretation
of Meet, Join and add, so that curried domain-producing functions
are handled naturally.

Implementation. In Aldor data values are not necessarily self-
identifying, but each expression has a unique well-defined domain.
Operations on data values are in principle extracted during execu-
tion from these domain objects and it is the compiler’s responsi-
bility to ensure that all the necessary domain objects are available
at known locations at run-time. Post-facto extension of domains is
implemented by constructing composite domain objects. Post-facto
extension of functions is implemented by combining functions as
described above. One of the most important aspects of the imple-
mentation of post facto extension is the static optimization of exten-
sion compositions, determining which functions should be called
during execution. This enables a number of further optimizations,
resulting in relatively efficient code.

Post facto extension can also be implemented in an object-
oriented environment. In this case it is necessary to modify data
structures representing class objects. These classes (including vir-

tual function tables) are usually accessed through the member ob-
jects so there is the added complexity of matching the lifetime of
the post facto extensions with their scope.

Relation to other work. Our design of post facto extensions
makes use of the idea of mixins, from the Flavors system [10],
applied to type-producing functions. This allows a separation of
concerns in the creation and use of first class type objects, as de-
scribed in [2]. The result gives a specialized form of what has
come to be known as aspect-oriented programming [11], appli-
cable to parameterized and non-parameterized types. If we view
contant domains as nullary domain-producing fuctions, we may
view post-facto extension as providing scoped point cuts associ-
ated to domain constructors. In the non-parametric case, a similar
effect can be achieved with open classes [12]. The use of type
categories in Aldor allows the compiler to perform various opti-
mizations, as described in [1], to eliminate function look-up and
perform in-lining where possible, taking into account post facto
extensions.

5. Use in Library Design
We now have a dozen years’ experience in the use of post facto
extensions for structuring mathematical libraries for Aldor . This
section describes some of the ways in which we have found it to be
useful.

Uniform treatment of raw types and object types. Many pro-
gramming languages make a distinction between “raw types” and
“object types.” This distinction does not exist in Aldor . The lan-
guage defines a set of standard types and the library endows them
with operations. All basic domains are initially defined simply as
data representations. All primitives are given as independent oper-
ations, provided by the Machine package. For example, we have

Boolean: Type == add {};
Integer: Type == add {};
DoubleFloat: Type == add {};
...

and the Machine package provides primitives for arithmetic on val-
ues of these types. Later, these types are extended by the standard
library to have a richer structure.

Layering large libraries. We have found it useful to be able to
build large libraries in layers, with fewer dependency cycles. In
bootstrapping the Standard Aldor Library, we have the following
layers:

1. Basic types without operations. The basic types are simply
declared to be types, and the data representation is implicit in
the use of available machine primitives on these types.

2. Basic types with representation. The basic types are extended
to themselves export the relevant primitives. They may now
be treated as types with an opaque representation. As the basic
types are extended with operations, they may refer to each other
in the signatures of their exports. For example, we may have

extend Boolean: with {
=: (%, %) -> Booelean;
convert: % -> String;
...

} == ...

extend Integer: with {
=: (%, %) -> Boolean;
<: (%, %) -> Boolean;
convert: % -> String;
...

} == ...

DirectProduct(n: Integer, S: Set): Set with {
component: (Integer, %) -> S;
new: Tuple S -> %;

} == add { ... }

extend DirectProduct(n: Integer, S: Semigroup): Semigroup == ...
extend DirectProduct(n: Integer, S: Monoid): Monoid == ...
extend DirectProduct(n: Integer, S: Group): Group == ...
...
extend DirectProduct(n: Integer, S: Ring): Join(Ring, Module(S)) == ...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
extend DirectProduct(n: Integer, S: DifferentialRing): DifferentialRing == ...
extend DirectProduct(n: Integer, S: Ordered): Ordered == ...
...

Figure 1. DirectProduct defined using extensions

extend String: with {
=: (%, %) -> Boolean;
#: % -> Integer -- Length.
...

} == ...

These may be compiled without having to resort to a multi-type
fixed-point determination in type inference.

3. Definition of constructed types. The library uses the primitive
types to construct a richer set of useful types, such as linked
lists, hash tables, I/O abstractions, etc.

4. Types with useful categories. The Standard Library defines a
number of categories, and the basic and constructed types are
extended to belong to them as appropriate.

The Algebra Library is built on top of the Standard Library as
follows:

5. Mathematical categories. The Algebra Library defines a rich
categorical structure with categories corresponding to many of
the standard algebraic abstractions. These include abstractions
for the concept of group, ring, euclidean domain, field, module,
algebra, etc.

6. Extension of the basic types. The arithmetic types of the Stan-
dard Library are extended to belong to all the appropriate cate-
gories from the Algebra Library.

7. Definition of mathematical domains. The library defines a set of
common mathematical domains, such as polynomials, matrices,
quotients, finite fields and so on.

A number of more sophisticated mathematical libraries are built
on top of the Algebra Library, and these extend the types of the
Standard Library and Algebra Library, as appropriate.

This layering allows the elimination of cyclic dependencies in
the design of the libraries and allows the libraries to be built and
tested in a modular fashion. It does this without compromising the
rich set of behaviours desired for the basic types.

Combined use of multiple libraries. With post facto extensions
it is quite easy to use multiple, independently developed libraries
without a host of data conversions. The application programmer
decides which categories from the various libraries will be impor-
tant and extends the necessary types to export them. Having done
this, the values computed by one library may be readily used in the
other libraries without conversion.

Separation of concerns. With post facto extensions it is straight-
forward to separately implement various independent aspects of do-
mains. This is one of the standard goals of aspect-oriented program-
ming. For example, one set of extensions can provide algebraic al-

gorithms, while another set of extensions provide translations to
TEX and a third set of extensions provide translations to MathML.
The code for each set of extensions can be separately developed,
tested and maintained.

Adding callback algorithms to parameters. One of the difficul-
ties with generic programming is that there are often specialized al-
gorithms that apply over certain domains. In C++ this is handled by
template specialization and is resolved statically. However, in Al-
dor types may be constructed dynamically so we need some other
mechanism to access specialized algorithms. Post facto extension,
combined with conditional category tests, allows generic code to
use special purpose algorithms, when applicable, without revising
library components.

We illustrate this point with an example from linear algebra.
Such a package can be defined generically over any commutative
ring. More efficient algorithms may be used, however, when the
ring is known to be an integral domain or a field. We may thus
assemble these algorithms into a package as follows:

LinearAlgebra(R:CommutativeRing, M:MatrixCategory R):
with {...} == add {

local Elim: LinearEliminationCategory(R, M) == {
R has Field =>

OrdinaryGaussElimination(R, M);
R has IntegralDomain =>

TwoStepFractionFreeGaussElimination(R,M);
DivisionFreeGaussElimination(R, M);

}

determinant(m:M):R == determinant(m)$Elim;
}

Certain coefficient rings may support efficient specialized algo-
rithms. For example, we may want to compute over the integers
using Chinese remaindering. However, we do not want to have to
modify the LinearAlgebra package whenever a new method is
incorporated into the library. We therefore define a category that a
ring can implement to provide linear algebra algorithms over itself:

LinearAlgebraRing: Category == with {
determinant: (M:MatrixCategory %) -> M -> %;
rank: (M:MatrixCategory %) -> M -> Integer;
...

}

We make one modification to the LinearAlgebra package to take
advantage of special-case algorithms carried in a LinearAlgebra-
Ring view: we replace the determinant function with

determinant(m:M):R == {
if R has LinearAlgebraRing then

determinant(M)(a)$R;
else

determinant(m)$Elim;
}

When we have special algorithms for some domain, we extend
the domain to know about them:

extend Integer: LinearAlgebraRing == add {
determinant(M: MatrixCategory %)(m: M): % ==

ChineseRemainderingDeterminant(M, m);
rank(M: MatrixCategory %)(m: M): % ==

ChineseRemainderingRank(M, m);
...

}

Whenever we use the LinearAlgebra package, it will use the
designated algorithm even if the coefficient ring is determined
dynamically.

The technique of using post facto extensions to endow domains
with special- case algorithms has been used in the in the construc-
tion of the

PIT library [13]. The notion of rings knowing how to
perform operations in structures over themselves has been explored
earlier in relation to composing factorization algorithms [14].

6. Conclusions
We have examined a number of problems that arise in the con-
struction of software libraries. These are all related to question of
whether existing types should be updated with new abstractions as
libraries grow or are used together. We have noted that the prob-
lem is particularly accute in computer algebra, where it is quite
usual that pre-existing types can satisfy newly defined abstractions.
We have observed, however, that in mathematical programming
new abstractions do not usually require any change in data rep-
resentation in order to be applied. Based on this observation, we
have proposed the notion of post facto extension of types and of
type producing functions. This provides a specialized instance of
aspect-oriented programming that has proven particularly effective
for mathematical computing.

Acknowledgments
The author would like to thank Samuel S. Dooley for his assistance
with the first implementation of post facto extensions in the A]

compiler at IBM Research. He would also like to express his grat-
itude to the late Manuel Bronstein for the LinearAlgebraRing
example.

References
[1] Watt, S.M., Broadbery, P.A., Dooley, S.S., Iglio, P., Morrison, S.C.,

Steinbach, J.M., Sutor, R.S.: A first report on the A# compiler,
Proc. 1994 International Symposium on Symbolic and Algebraic
Computation, pp. 25–31, ACM Press.

[2] Watt, S.M., Broadbery, P.A., Dooley, S.S., Iglio, P., Morrison, S.C.,
Steinbach, J.M., Sutor, R.S.: AXIOM Library Compiler User Guide,
The Numerical Algorithms Group Ltd, Oxford 1994.

[3] Watt, S.M., Aldor, in Handbook of Computer Algebra, Grabmeier,
Kaltofen and Weispfenning (editors), Springer Verlag 2003, pp. 265–
270.

[4] Aldor User Guide, http://www.aldor.org (2003).
[5] Jenks, R.D., Sutor, R.S.: Axiom: The Scientific Computation System,

Springer Verlag (1992).
[6] Liskov, B. A history of CLU, Proc. Second ACM SIGPLAN conference

on History of programming languages, pp. 133–147, ACM Press (1993).

[7] Jenks, R., Trager, B.: A language for computational algebra, Proc.
1981 ACM Symposium on Symbolic and Algebraic Computation, pp.
6–13, ACM Press.

[8] Foderaro, J.K.: The Design of a Language for Algebraic Computation,
Ph.D. Thesis, UC Berkeley, 1983.

[9] Abdali, S.K., Cherry, G.W., Soiffer, N.: A Smalltalk system for
algebraic manipulation, Proc. 1986 Object Oriented Programming
Systems Languages and Applications, pp. 277–283, ACM Press.

[10] Moon, D.A.: Object-oriented programming with flavors, Proc. 1986
Object Oriented Programming Systems Languages and Applications,
pp. 1–8, ACM Press.

[11] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J-M., Irwin, J.: Aspect-Oriented Programming, Proc.
European Conference on Object-Oriented Programming, LNCS 1241
pp. 220-242, Springer Verlag (1997).

[12] Millstein, T., Chambers, C.: Modular Statically Typed Multimethods,
Proc. European Conference on Object-Oriented Programming, LNCS
1628 pp. 279-303, Springer Verlag (1999).

[13] Bronstein, M.:
PIT : A strongly-typed embeddable computer algebra

library, Proc. DISCO’96, LNCS 1128 pp. 22-33, Springer Verlag.
[14] Davenport, J., Gianni, P., Trager, B.: Scratchpad’s view of algebra II:

a categorical view of factorization, Proc. 1991 International Symposium
on Symbolic and Algebraic Computation, pp. 32–38, ACM Press.

