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Abstract

Domain-specific languages (DSLs) are typically implemenrig

code generation, in which domain-specific constructs arestated
to a general-purpose “host” language. Aspect-orienteduages
go one step further. An aspect weaver doesn't just genetate,

it transforms code in the host language. In both cases, one of

the major challenges in building and using the DSL is achigvi
good integration between the code generator and the hagidge.

Generated code should be type safe, and any errors should b

reported before generation.

Partial evaluation and multi-stage languages are exdebets
for implementing ordinary DSLs which satisfy these requoients.
Combining partial evaluation with reflection could potaii§i yield
a system which is strong enough to perform aspect weavinghs w
This paper discusses some of the technical hurdles which Ineus
overcome to make such a combination work in practice.

1. Introduction

A domain-specific language (DSL) differs from an ordinabyrdiry
because the functionality provided by a DSL cannot be easily
capsulated behind ordinary functions and classes. Effigienthe
usual culprit behind this failure of encapsulation. A clésterface
may introduce a layer dhterpretive overheadvhich is unaccept-

A code transformer, on the other hand, must parse and under-
stand the code that it transforms. For example, in order tftopa
aspect weaving, the Aspectd compiler must correctly disish
between field and method signatures, and keep track of tlegiinh
tance relationships between classes.

Nevertheless, the distinction between code generatiorcathel
transformation is not black and white. Indeed, a domaircifige
aspect language (DSAL) can be usefully defined as a DSL which

erforms both code generation and weaving. It may genecate ¢
or domain-specific constructs, and then weave that codeant
existing general purpose program. RIDL and COOL follow this
pattern [15].

Most programmers would agree that writing good code is diffi-
cult. Experience with DSLs has shown that writing good coele-g
erators is even more difficult. As a result, a great deal ofaesh
has focused on developing toolkits which simplify the tablvnt-
ing generators. This paper discusses some of the issudsedvo
in building a toolkit for constructing DSALSs, which must fem
both code generation and weaving. One of the main challeioges
such atoolkit is achieving close integration between th&D&nd
the host language.

With any DSL, generated code should be correct and typeg-safe
and any errors should be reportbdforecode generation, so that
the user does not need to read generated code. In a DSAL, good

able. To reduce such overhead, DSLs are often implemented byintegration is even more important, since the weaving pecaust

means of code generation, in which domain-specific corstiare
translated or compiled to a general-purpose “host” languag

directly modify constructs in the host language. Idealig, weaver
should respect the semantics of the host language, so tlaainge

Like DSLs, aspect-oriented programming (AOP) addresses a does not create unexpected changes in behavior.

failure of encapsulation. In the case of AOP, encapsuldtids be-
causecross-cutting concernavhich are logically separate in the
high-level design of a program, become tangled togethehén t

Partial evaluation and multi-stage languages are exddbets
for writing DSLs which are well-integrated with their hoariguage
[11] [19]. Combinining partial evaluation with reflectiorowld

source code. An aspect language allows such concerns teebe sp  potentially yield a system which is strong enough to perfaspect
ified separately, and themeaveshe aspects together to generate a Wweaving as well. However, there are a number of technicallear

complete program [12].

Whereas DSLs are primarily concerned wghneratingcode,
aspect languages are primarily concerned wiimsformingcode.
These two tasks are qualitatively different. A code geroerdbes

not need to understand the full syntax and semantics of tee ho

language. Many successful code generators are little niae t

to overcome before this mechanism can be applied in the real
world.

2. Language Integration in DSLs
Parser generators suchgscc andantlr are an old and familiar

glorified macro systems — they manipulate blocks of code as €xample of DSLs. A parser generator takes a grammar definitio

untyped syntax trees, or even ASCII text.
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as input, and generates a program which parses the gramhmar. T

following is an ANTLR grammar rule:
expr returns [int v] { int el1, e2; }
v=literal

| el=literal "+" e2=expr { v = el + e2; }

The important thing to notice about this example is that it-co

tains a mixure of domain-specific code, and code in the host la
guage (here Java or C++). ANTLR does not attempt to parse-or un



derstand code in the host language, it simply copies the I@®IA
text. Any syntax errors or type errors will not be discovergt
til after the code has been generated. Manipulating sowde as
ASCII text can also introduce subtle scoping and naminggras
was frequently encountered in early, “unhygienic” macrsteyns.
This is an example of poor integration with the host language

On the other hand, ANTLR does perform domain-specific anal-
ysis of the code that it generates. Because code generatimme
ahead of time, it can detect ambiguous grammars, missimg,rul
and similar problems.

Parser combinators represent an alternative approachThé]
following is code written in Haskell. (Unlike ANTLR, thers no
syntax sugatr, so it is somewhat harder to read).

add el _ e2 = el + e2
expr :: Parser Char Int
expr = literal

<|> (pSucceed add) <x*>
literal <*> (pSym ’+’) <*> expr

With combinators, each grammar rule is actually given a type
in the host language®arser Char Int is the type of an object
which parses a character string to return an integer. Snaafigos
are combined using the|> and <*> operators to create larger
parsers. These operators are statically typed, so any typese
will be discovered before composition, rather than aftestéad
of representing host-language expressions as ASCII teagkéll
uses higher-order functions.

Haskell is a particularly good language for writing DSLs; be
cause it is possible to manipulate pieces of code as firstclal-
ues, much like Lisp and Scheme. It is easy to wrap any exjmessi
up as a function, and then pass it as an argument to the code gen
ator. Unlike Lisp and Scheme, Haskell is statically-typ8thtic
typing confers an important benefit: if a DSL code generasor i
well-typed, then the code that it generates is also guaranteed to
be well-typed

As a result of these features, parser combinators are well-
integrated with Haskell. Unfortunately, they also have sadvan-
tage. The parser is not generated until run-time, so theadager
of interpretive overhead. Type errors are detected at cleatione,
but domain-specific errors, such as ambiguous grammarsnaetil
be detected until run-time.

2.1 Partial Evaluation and multi-stage languages

Partial evaluation is an old technique which attempts tocvae
these problems. A partial evaluator fuses a compiler wittinan
terpreter. Offline partial evaluation, which is the kind coonly
used in practice, works by labeling every expression in @yam

as either “static” or “dynamic”. This process is knownkisding-
time analysis Static expressions are evaluated at compile-time by
the interpreter, while dynamic expressions are compiladaohine
code, which will be evaluated at run-time [11].

Multi-stage languages operate on a similar principle [1®].
multi-stage language allows a block of code to be “quotediictv
means that the evaluation of the code is delayed. A dual “un-
quoting” mechanism forces the immediate evaluation ofiqaler
subexpressions. The net effect is similar to partial edaoa- ex-
pressions are labeled as either “evaluate now” (staticeealtate
later” (dynamic).

These two mechanisms are designed to eliminate the interpre
tive overhead associated with a DSL. In the case of pardegs, t
production rules for a particular grammar are staticallfirdzd. A
partial evaluator would thus evaluate t#e> and<|> operators at
compile-time. Any composition errors (such as those cabyeah
ambiguous grammar) would also be detected at compile-time.

2.1.1 A Toolkit for building DSLs?

Put together, the tools described above offer some hopernifaru
sal toolkit for building DSLs which arevell-integratedwith their
host language, and whidlespect the semantiad that language.
The key ingredients are the following:

e First-class functions, which can be used to manipulate esde
values.

e Static typing, which guarantees that the generated coddavil
type-safe.

e Partial evaluation or staging.

(Partial evaluation automatically respects the semantidhe
host language, because the “semantics” of a language isjust
description of the evaluation rules for that language.)

2.1.2 Limitations and partially static data

Unfortunately, partial evaluation does have some linotagi in
practice, which have been described extensively in theatitiee
[10]. The amount of speedup, and the nature of the generated
code, depend closely on two things: the way in which the DSL
interpreter was written, and the precise algorithm usedbifading-
time analysis. Aggressive analyzers can locate more stati; but
the evaluator may then fail to terminate.

Even when binding-time analysis works properly, a partiale
uator will only rewrite program terms according to the reduc
tion rules of the host language. There are a number of other pr
gram transformations (such as deforestation [21]) whiehkmth
semantics-preserving, and which yield substantial spesdout
these are beyond the reach of partial evaluators.

One of the most serious problems is that partial evaluatorst m
label data structures as either “static” or “dynamic”. hpreters for
real-world DSLs often manipulate data structures that pegtfally
static”, containing a mixture of static and dynamic infotina. A
simple evaluator is forced to label such structures as “ohiog
which means that they will be unable to remove much of the
interpretive overhead.

Complex data structures must be factored into static and dy-
namic parts. This can be done either by rewriting the intgar
using more sophisticated binding-time analysis, or bollag‘re-
moval” in strongly typed languages is a special case of thblpm,
and one which is particularly difficult to solve [20].

3. Aspect Weaving

In the DSL examples above, “good integration” with the hasi:|
guage means that expressions in the host language can beedrap
up and passed to the code generator in a type-safe mannectAsp
weavers go far beyond this, because they must parse, uaaderst
and modify constructs in the host language.

Reflection, which is found in many OO languages, including
Smalltalk, CLOS, and (to some extent) Java, allows ordicage
to inspect and/or modify existing classes. Class dectaratare
known at compile-time, and so they constitute static daanC
bining reflection with partial evaluation extends the ranfgener-
ators which can be produced.

3.1 Introspection

The reflection facilities provided by Java arrospective It is
possible to inspect, but not modify, the structure of a progrin
particular, Java supports the following operations:

e |tis possible to find the class of an object at run-time.
e |t is possible to query the class to find method names and
signatures.



e |t is possible to call a method whose name and signature is not

known until run-time.
This kind of reflection is useful for generating “boilerpat

code, which must peform the same task in the same way on a wide

variety of data types. In functional programming circlesil&rplate
generation is called “generic programming” [13] [7]. Exde®oof
“boilerplate” include:

e Comparing two objects for equality. (Compare the valuedlof a
fields.)

e Serializing an object, or converting it to string. (Seraliall
fields.)

Fortunately, this problem is easily solved. The solutidioiseat
an aspect as a function which takesiammutableset of classes as
input, and yields a new set of transformed classes as oUEpis.
is the strategy used by feature-oriented programming, laeck tare
several additional reasons to prefer it.

Lopez-Herrejon has argued that treating aspects as funsctio
makes it easy to control the order of multiple transformagicand
enablesstep-wise refinemeift6].

Perhaps even more importantly, different parts of a program
may need to use different sets of class extensions, whici thea
the original definitions must be preserved. Bergel's clas®b [2],
which are an extension to Smalltalk, allows classes to benebetd

* Generic traversals and rewrites of complex data, such as XML only within a particular scope.

Programmers tend to avoid reflection where possible because

its performance is abysmal. However, if the class of an ahgec
statically known, then it is possible to partially evaluagdective
calls. Partial evaluation eliminates the method lookupecaahd
transform reflective method calls into ordinary method<fd].
Consider the following example, which is taken from [4]:

static void printFields(Object anObj) {
Field[] fields = anObj.getClass().getFields();
for (int i = 0; i < fields.length; i++)
System.out.println(fields[i] .getName() +
": " + fields[i].get(anObj);
}

If the class o&nObj is statically known, thergetFields () can be
evaluated at compile-time. Ondcields is known, the loop will be
further unrolled, producing a piece of code with no refleztalls.

Note that the class afnObj may be known even if its value is
not, in the following two situations. First, if the type efObj at
partial-evaluation time i€’, whereC' is a final class, then the run-
time class ofanObj is guaranteed to b€'. Second, the run-time
class ofanObj is C' if the value ofanObj is the dynamic expression
new C(...).

Exploiting this information requires a very sophisticapettial
evaluator. In addition to labeling expressions as statidymamic,
it must label theitypeas either static or dynamic. Partial evaluation
must be integrated with the type system.

3.2 Extensible classes

Smalltalk and CLOS not only allow classes to be inspectesly th
allow existing classes to be modified, or new classes to tsene
on the fly [3] [18]. In a statically typed language like Javeg-c
ating a new class would be a reflective operation, becausseaga
are not ordinary objects. Since Smalltalk and CLOS are dynam
languages, creating new classes on the fly is standard gacti

By itself, introspection is limited because it can only bediso
generate code inside methods. However, if classes aretshiieen
code generators can create the methods and classes thesraglv
well.

In principle, this mechanism is powerful enough to do thedlkin
of aspect weaving found in AspectJ. An aspect weaver woustl fir
inspect the set of currently defined classes, and then mdulifse
definitions as appropriate. Unfortunately, there are soer®ss

3.2.2 Type Safety

In a statically-typed language, classes denote types, ystrams-
formation which affects class signatures (such as Aspetiter-
type declarations) will affect the well-typedness of pargrcode.
Aspect weaving must thus be done before type checking, bedau
will invalidate any type judgements that were previouslydedJn-
fortunately, doing aspect weaving first creates two proklefirst,
the weaver must manipulate code that may not be correcthaic
especially problematic if it is combined with a partial exator that
relies on correct type information. Second, type errors appear
in the generated code, where they are more difficult to fix.

One solution to this problem is to use a type system based on
virtual classesas found in the gbeta language [5]. Type judgements
in gbeta are made under the assumption that the full defindfo
a virtual class is not statically known. Virtual classes tlams be
extended without invalidating previous type judgements.

The use of virtual classes places a strong restriction on the
aspect-weaver: the weaver cannot perform arbitrary toans-
tions; it must only generate subclasses. The question oftb@m-
force this restriction in a fully reflective environment isa apen
problem.

Even with a restricted weaver, providing extensible classe
within a type-safe language requires a type system much more
powerful than Java’'s — one which is based upon dependens type
[8] [9] [6]. The only alternative to heroic type hackery isuse a
host language which is not statically typed. Dynamic laggsado
not solve the underlying the problem, though, because wddvou
still like the assurance that weaving will not introduceeygrrors;
that's part of what it means to respect the semantics of tls ho
language.

3.2.3 The DeeP programming language

| have taken a few steps towards a DSAL toolkit in the design of
the DEEP programming language [8]. EEPis a formal language
calculus which integrates dependent types, singletonstyped
partial evaluation. By combining these three mechanismetteer,
DeEePcan deal with partially static data.

The basic idea behind theHEP type system is that the type
of an expression should hold whatever information is knotvoua
that expression at compile-time. In the case of static dh&atype

technical problems that need to be overcome in order to make of an expression will be singleton typeepresenting its value. For

weaving work with a partial evaluator.

3.2.1 Classes Should be Immutable

Aspect-weaving is ordinarily thought of as an operation akhi
modifies existing classes. Unfortunately, modification iside-
effect which changes the heap. Dealing with a mutable he&esna
things much more difficult, because everything stored orhtep
becomes partially static data — the Achilles Heel of paeialu-
ators.

example, the type of1 + 2) is 3. The type system may partially
evaluate a term in order to assign an accurate type to thmat ter
For expressions which are not statically knowng#» uses
dependent types, which contain a mixture of both types ahasa
For example, ilhyList is a list of length3 (a dependent type) then
length(myList) will have type3, even if the elements of the list
are not statically known. The advantage of this scheme tsttisaa
good way to deal with partially static data; the disadvaetsghat
programming with dependent types can be notoriously tricky



The Deerlanguage is based on prototypes rather than classes.
At compile-time, a prototype is treated as a type for the psep
of static type checking. At run-time, a prototype is just adioary
object: it can be stored in a field, or passed as an argument to a
function. The prototype model allows classes to be createt a
manipulated by ordinary code, just like in CLOS and Sma{|tal
without sacrificing static type safety. This model is inteddo
simplify the task of writing code generators.

Finally, DEEP supportsdeep mixin compositionof modules.
Deep mixin composition is an extension of inheritance whath
lows a group of classes to be encapsulated in a module, and the
extended as single unit. Classes keep the same name within th
module, so it appears to client code as if the classes haveugee
dated in place. This form of composition is the same as thatdo
in feature-oriented programming [1], multi-dimensioneparation
of concerns [17], and virtual classes in gbeta [5].

Deep mixin composition has some of the capabilities of aspec
weaving, but not all. It is possible to add “before” and “&fte
code to individual methods, but it is not possible to qugnier
methods and classes, or to write general-purpose tranafmms.
Quantification requires reflection, whicheBP does not currently
support.

Summary.
To summarize, BePprovides the following:

o A statically typed language with a powerful type system.
¢ A partial evaluator which supports partially-static data.

e First-class functions, classes, and modules.

e Deep mixin composition.

However, the [EeP calculus currently doesot support reflec-
tion of any kind. The lack of reflection means that it is notgbke
to write generic boilerplate code, or to do general-purpasgect
weaving.

Adding simple introspection would be easy enough, but it is
not sufficient for true aspect-weaving. Ideally, reflectisimould
be integrated with the mechanism for mixin composition, fsat t
the type system can guarantee that a particular class éxtens
generates a proper subtype. Doing this in a way that is bqté-ty
safe, and sufficiently flexible for DSALs, remains an operbfeo.

4, Conclusion

Combining partial evaluation with first-class functionsais excel-
lent way to write code generators for DSLs. Such generat@s a
type-safe and well-integrated with the host language. Agldim-
ple reflection to this mix allows the automatic generatiorituafil-
erplate” code.

It may be possible to write full-blown aspect-weavers by eom
bining partial evaluation with both reflection and firstadaclasses.
However, if it is possible to extend classes in arbitrary syahen
the resulting transformations may not be type-safe. Thehar@em
for extending classes safely (i.e. inheritance) shouldnbegirated
with reflection, and the best way to do this is not obvious.
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