
Partial Evaluation + Reflection = Domain Specific Aspect
Languages

DeLesley Hutchins
LFCS, University of Edinburgh
D.S.Hutchins@sms.ed.ac.uk

Abstract
Domain-specific languages (DSLs) are typically implemented by
code generation, in which domain-specific constructs are translated
to a general-purpose “host” language. Aspect-oriented languages
go one step further. An aspect weaver doesn’t just generate code,
it transforms code in the host language. In both cases, one of
the major challenges in building and using the DSL is achieving
good integration between the code generator and the host language.
Generated code should be type safe, and any errors should be
reported before generation.

Partial evaluation and multi-stage languages are excellent tools
for implementing ordinary DSLs which satisfy these requirements.
Combining partial evaluation with reflection could potentially yield
a system which is strong enough to perform aspect weaving as well.
This paper discusses some of the technical hurdles which must be
overcome to make such a combination work in practice.

1. Introduction
A domain-specific language (DSL) differs from an ordinary library
because the functionality provided by a DSL cannot be easilyen-
capsulated behind ordinary functions and classes. Efficiency is the
usual culprit behind this failure of encapsulation. A cleaninterface
may introduce a layer ofinterpretive overheadwhich is unaccept-
able. To reduce such overhead, DSLs are often implemented by
means of code generation, in which domain-specific constructs are
translated or compiled to a general-purpose “host” language.

Like DSLs, aspect-oriented programming (AOP) addresses a
failure of encapsulation. In the case of AOP, encapsulationfails be-
causecross-cutting concerns, which are logically separate in the
high-level design of a program, become tangled together in the
source code. An aspect language allows such concerns to be spec-
ified separately, and thenweavesthe aspects together to generate a
complete program [12].

Whereas DSLs are primarily concerned withgeneratingcode,
aspect languages are primarily concerned withtransformingcode.
These two tasks are qualitatively different. A code generator does
not need to understand the full syntax and semantics of the host
language. Many successful code generators are little more than
glorified macro systems — they manipulate blocks of code as
untyped syntax trees, or even ASCII text.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DSAL Workshop, GPCE 2006 Oct 23d 2006, Portland OR
Copyright c© 2006 ACM [to be supplied]. . . $5.00

A code transformer, on the other hand, must parse and under-
stand the code that it transforms. For example, in order to perform
aspect weaving, the AspectJ compiler must correctly distinguish
between field and method signatures, and keep track of the inheri-
tance relationships between classes.

Nevertheless, the distinction between code generation andcode
transformation is not black and white. Indeed, a domain-specific
aspect language (DSAL) can be usefully defined as a DSL which
performs both code generation and weaving. It may generate code
for domain-specific constructs, and then weave that code into an
existing general purpose program. RIDL and COOL follow this
pattern [15].

Most programmers would agree that writing good code is diffi-
cult. Experience with DSLs has shown that writing good code gen-
erators is even more difficult. As a result, a great deal of research
has focused on developing toolkits which simplify the task of writ-
ing generators. This paper discusses some of the issues involved
in building a toolkit for constructing DSALs, which must perform
both code generation and weaving. One of the main challengesfor
such a toolkit is achieving close integration between the DSAL and
the host language.

With any DSL, generated code should be correct and type-safe,
and any errors should be reportedbeforecode generation, so that
the user does not need to read generated code. In a DSAL, good
integration is even more important, since the weaving process must
directly modify constructs in the host language. Ideally, the weaver
should respect the semantics of the host language, so that weaving
does not create unexpected changes in behavior.

Partial evaluation and multi-stage languages are excellent tools
for writing DSLs which are well-integrated with their host language
[11] [19]. Combinining partial evaluation with reflection could
potentially yield a system which is strong enough to performaspect
weaving as well. However, there are a number of technical hurdles
to overcome before this mechanism can be applied in the real
world.

2. Language Integration in DSLs
Parser generators such asyacc andantlr are an old and familiar
example of DSLs. A parser generator takes a grammar definition
as input, and generates a program which parses the grammar. The
following is an ANTLR grammar rule:

expr returns [int v] { int e1, e2; }
: v=literal
| e1=literal "+" e2=expr { v = e1 + e2; }
;

The important thing to notice about this example is that it con-
tains a mixure of domain-specific code, and code in the host lan-
guage (here Java or C++). ANTLR does not attempt to parse or un-

derstand code in the host language, it simply copies the raw ASCII
text. Any syntax errors or type errors will not be discoveredun-
til after the code has been generated. Manipulating source code as
ASCII text can also introduce subtle scoping and naming errors, as
was frequently encountered in early, “unhygienic” macro systems.
This is an example of poor integration with the host language.

On the other hand, ANTLR does perform domain-specific anal-
ysis of the code that it generates. Because code generation is done
ahead of time, it can detect ambiguous grammars, missing rules,
and similar problems.

Parser combinators represent an alternative approach [14]. The
following is code written in Haskell. (Unlike ANTLR, there is no
syntax sugar, so it is somewhat harder to read).

add e1 _ e2 = e1 + e2

expr :: Parser Char Int
expr = literal

<|> (pSucceed add) <*>
literal <*> (pSym ’+’) <*> expr

With combinators, each grammar rule is actually given a type
in the host language;Parser Char Int is the type of an object
which parses a character string to return an integer. Small parsers
are combined using the<|> and <*> operators to create larger
parsers. These operators are statically typed, so any type errors
will be discovered before composition, rather than after. Instead
of representing host-language expressions as ASCII text, Haskell
uses higher-order functions.

Haskell is a particularly good language for writing DSLs, be-
cause it is possible to manipulate pieces of code as first-class val-
ues, much like Lisp and Scheme. It is easy to wrap any expression
up as a function, and then pass it as an argument to the code gener-
ator. Unlike Lisp and Scheme, Haskell is statically-typed.Static
typing confers an important benefit: if a DSL code generator is
well-typed, then the code that it generates is also guaranteed to
be well-typed.

As a result of these features, parser combinators are well-
integrated with Haskell. Unfortunately, they also have a disadvan-
tage. The parser is not generated until run-time, so there isa layer
of interpretive overhead. Type errors are detected at compile-time,
but domain-specific errors, such as ambiguous grammars, will not
be detected until run-time.

2.1 Partial Evaluation and multi-stage languages

Partial evaluation is an old technique which attempts to overcome
these problems. A partial evaluator fuses a compiler with anin-
terpreter. Offline partial evaluation, which is the kind commonly
used in practice, works by labeling every expression in a program
as either “static” or “dynamic”. This process is known asbinding-
time analysis. Static expressions are evaluated at compile-time by
the interpreter, while dynamic expressions are compiled tomachine
code, which will be evaluated at run-time [11].

Multi-stage languages operate on a similar principle [19].A
multi-stage language allows a block of code to be “quoted”, which
means that the evaluation of the code is delayed. A dual “un-
quoting” mechanism forces the immediate evaluation of particular
subexpressions. The net effect is similar to partial evaluation – ex-
pressions are labeled as either “evaluate now” (static) or “evaluate
later” (dynamic).

These two mechanisms are designed to eliminate the interpre-
tive overhead associated with a DSL. In the case of parsers, the
production rules for a particular grammar are statically defined. A
partial evaluator would thus evaluate the<*> and<|> operators at
compile-time. Any composition errors (such as those causedby an
ambiguous grammar) would also be detected at compile-time.

2.1.1 A Toolkit for building DSLs?

Put together, the tools described above offer some hope of a univer-
sal toolkit for building DSLs which arewell-integratedwith their
host language, and whichrespect the semanticsof that language.
The key ingredients are the following:

• First-class functions, which can be used to manipulate codeas
values.

• Static typing, which guarantees that the generated code will be
type-safe.

• Partial evaluation or staging.

(Partial evaluation automatically respects the semanticsof the
host language, because the “semantics” of a language is justa
description of the evaluation rules for that language.)

2.1.2 Limitations and partially static data

Unfortunately, partial evaluation does have some limitations in
practice, which have been described extensively in the literature
[10]. The amount of speedup, and the nature of the generated
code, depend closely on two things: the way in which the DSL
interpreter was written, and the precise algorithm used forbinding-
time analysis. Aggressive analyzers can locate more staticdata, but
the evaluator may then fail to terminate.

Even when binding-time analysis works properly, a partial eval-
uator will only rewrite program terms according to the reduc-
tion rules of the host language. There are a number of other pro-
gram transformations (such as deforestation [21]) which are both
semantics-preserving, and which yield substantial speedups, but
these are beyond the reach of partial evaluators.

One of the most serious problems is that partial evaluators must
label data structures as either “static” or “dynamic”. Interpreters for
real-world DSLs often manipulate data structures that are “partially
static”, containing a mixture of static and dynamic information. A
simple evaluator is forced to label such structures as “dynamic”,
which means that they will be unable to remove much of the
interpretive overhead.

Complex data structures must be factored into static and dy-
namic parts. This can be done either by rewriting the interpreter,
using more sophisticated binding-time analysis, or both. “Tag re-
moval” in strongly typed languages is a special case of the problem,
and one which is particularly difficult to solve [20].

3. Aspect Weaving
In the DSL examples above, “good integration” with the host lan-
guage means that expressions in the host language can be wrapped
up and passed to the code generator in a type-safe manner. Aspect
weavers go far beyond this, because they must parse, understand,
and modify constructs in the host language.

Reflection, which is found in many OO languages, including
Smalltalk, CLOS, and (to some extent) Java, allows ordinarycode
to inspect and/or modify existing classes. Class declarations are
known at compile-time, and so they constitute static data. Com-
bining reflection with partial evaluation extends the rangeof gener-
ators which can be produced.

3.1 Introspection

The reflection facilities provided by Java areintrospective. It is
possible to inspect, but not modify, the structure of a program. In
particular, Java supports the following operations:

• It is possible to find the class of an object at run-time.
• It is possible to query the class to find method names and

signatures.

• It is possible to call a method whose name and signature is not
known until run-time.

This kind of reflection is useful for generating “boilerplate”
code, which must peform the same task in the same way on a wide
variety of data types. In functional programming circles, boilerplate
generation is called “generic programming” [13] [7]. Examples of
“boilerplate” include:

• Comparing two objects for equality. (Compare the values of all
fields.)

• Serializing an object, or converting it to string. (Serialize all
fields.)

• Generic traversals and rewrites of complex data, such as XML.

Programmers tend to avoid reflection where possible because
its performance is abysmal. However, if the class of an object is
statically known, then it is possible to partially evaluatereflective
calls. Partial evaluation eliminates the method lookup code, and
transform reflective method calls into ordinary method calls [4].

Consider the following example, which is taken from [4]:

static void printFields(Object anObj) {
Field[] fields = anObj.getClass().getFields();
for (int i = 0; i < fields.length; i++)
System.out.println(fields[i].getName() +

": " + fields[i].get(anObj);
}

If the class ofanObj is statically known, thengetFields () can be
evaluated at compile-time. Oncefields is known, the loop will be
further unrolled, producing a piece of code with no reflective calls.

Note that the class ofanObj may be known even if its value is
not, in the following two situations. First, if the type ofanObj at
partial-evaluation time isC, whereC is a final class, then the run-
time class ofanObj is guaranteed to beC. Second, the run-time
class ofanObj is C if the value ofanObj is the dynamic expression
new C(...) .

Exploiting this information requires a very sophisticatedpartial
evaluator. In addition to labeling expressions as static ordynamic,
it must label theirtypeas either static or dynamic. Partial evaluation
must be integrated with the type system.

3.2 Extensible classes

Smalltalk and CLOS not only allow classes to be inspected, they
allow existing classes to be modified, or new classes to be created
on the fly [3] [18]. In a statically typed language like Java, cre-
ating a new class would be a reflective operation, because classes
are not ordinary objects. Since Smalltalk and CLOS are dynamic
languages, creating new classes on the fly is standard practice.

By itself, introspection is limited because it can only be used to
generate code inside methods. However, if classes are objects, then
code generators can create the methods and classes themselves as
well.

In principle, this mechanism is powerful enough to do the kind
of aspect weaving found in AspectJ. An aspect weaver would first
inspect the set of currently defined classes, and then modifythose
definitions as appropriate. Unfortunately, there are some serious
technical problems that need to be overcome in order to make
weaving work with a partial evaluator.

3.2.1 Classes Should be Immutable

Aspect-weaving is ordinarily thought of as an operation which
modifies existing classes. Unfortunately, modification is aside-
effect which changes the heap. Dealing with a mutable heap makes
things much more difficult, because everything stored on theheap
becomes partially static data — the Achilles Heel of partialevalu-
ators.

Fortunately, this problem is easily solved. The solution isto treat
an aspect as a function which takes animmutableset of classes as
input, and yields a new set of transformed classes as output.This
is the strategy used by feature-oriented programming, and there are
several additional reasons to prefer it.

Lopez-Herrejon has argued that treating aspects as functions
makes it easy to control the order of multiple transformations, and
enablesstep-wise refinement[16].

Perhaps even more importantly, different parts of a program
may need to use different sets of class extensions, which mean that
the original definitions must be preserved. Bergel’s class boxes [2],
which are an extension to Smalltalk, allows classes to be extended
only within a particular scope.

3.2.2 Type Safety

In a statically-typed language, classes denote types, so any trans-
formation which affects class signatures (such as AspectJ’s inter-
type declarations) will affect the well-typedness of program code.
Aspect weaving must thus be done before type checking, because it
will invalidate any type judgements that were previously made. Un-
fortunately, doing aspect weaving first creates two problems. First,
the weaver must manipulate code that may not be correct, which is
especially problematic if it is combined with a partial evaluator that
relies on correct type information. Second, type errors will appear
in the generated code, where they are more difficult to fix.

One solution to this problem is to use a type system based on
virtual classes, as found in the gbeta language [5]. Type judgements
in gbeta are made under the assumption that the full definition of
a virtual class is not statically known. Virtual classes canthus be
extended without invalidating previous type judgements.

The use of virtual classes places a strong restriction on the
aspect-weaver: the weaver cannot perform arbitrary transforma-
tions; it must only generate subclasses. The question of howto en-
force this restriction in a fully reflective environment is an open
problem.

Even with a restricted weaver, providing extensible classes
within a type-safe language requires a type system much more
powerful than Java’s — one which is based upon dependent types
[8] [9] [6]. The only alternative to heroic type hackery is touse a
host language which is not statically typed. Dynamic languages do
not solve the underlying the problem, though, because we would
still like the assurance that weaving will not introduce type errors;
that’s part of what it means to respect the semantics of the host
language.

3.2.3 The DEEP programming language

I have taken a few steps towards a DSAL toolkit in the design of
the DEEP programming language [8]. DEEP is a formal language
calculus which integrates dependent types, singleton types, and
partial evaluation. By combining these three mechanisms together,
DEEPcan deal with partially static data.

The basic idea behind the DEEP type system is that the type
of an expression should hold whatever information is known about
that expression at compile-time. In the case of static data,the type
of an expression will be asingleton typerepresenting its value. For
example, the type of(1 + 2) is 3. The type system may partially
evaluate a term in order to assign an accurate type to that term.

For expressions which are not statically known, DEEP uses
dependent types, which contain a mixture of both types and values.
For example, ifmyList is a list of length3 (a dependent type) then
length(myList) will have type3, even if the elements of the list
are not statically known. The advantage of this scheme is that it is a
good way to deal with partially static data; the disadvantage is that
programming with dependent types can be notoriously tricky.

The DEEP language is based on prototypes rather than classes.
At compile-time, a prototype is treated as a type for the purpose
of static type checking. At run-time, a prototype is just an ordinary
object: it can be stored in a field, or passed as an argument to a
function. The prototype model allows classes to be created and
manipulated by ordinary code, just like in CLOS and Smalltalk,
without sacrificing static type safety. This model is intended to
simplify the task of writing code generators.

Finally, DEEP supportsdeep mixin compositionof modules.
Deep mixin composition is an extension of inheritance whichal-
lows a group of classes to be encapsulated in a module, and then
extended as single unit. Classes keep the same name within the
module, so it appears to client code as if the classes have been up-
dated in place. This form of composition is the same as that found
in feature-oriented programming [1], multi-dimensional separation
of concerns [17], and virtual classes in gbeta [5].

Deep mixin composition has some of the capabilities of aspect-
weaving, but not all. It is possible to add “before” and “after”
code to individual methods, but it is not possible to quantify over
methods and classes, or to write general-purpose transformations.
Quantification requires reflection, which DEEP does not currently
support.

Summary.
To summarize, DEEPprovides the following:

• A statically typed language with a powerful type system.
• A partial evaluator which supports partially-static data.
• First-class functions, classes, and modules.
• Deep mixin composition.

However, the DEEP calculus currently doesnot support reflec-
tion of any kind. The lack of reflection means that it is not possible
to write generic boilerplate code, or to do general-purposeaspect
weaving.

Adding simple introspection would be easy enough, but it is
not sufficient for true aspect-weaving. Ideally, reflectionshould
be integrated with the mechanism for mixin composition, so that
the type system can guarantee that a particular class extension
generates a proper subtype. Doing this in a way that is both type-
safe, and sufficiently flexible for DSALs, remains an open problem.

4. Conclusion
Combining partial evaluation with first-class functions isan excel-
lent way to write code generators for DSLs. Such generators are
type-safe and well-integrated with the host language. Adding sim-
ple reflection to this mix allows the automatic generation of“boil-
erplate” code.

It may be possible to write full-blown aspect-weavers by com-
bining partial evaluation with both reflection and first-class classes.
However, if it is possible to extend classes in arbitrary ways, then
the resulting transformations may not be type-safe. The mechanism
for extending classes safely (i.e. inheritance) should be integrated
with reflection, and the best way to do this is not obvious.

References
[1] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise

refinement.Proceedings of ICSE, 2003.

[2] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Classboxes:
Controlling visibility of class extensions.Computer Languages,
Systems and Structures, 31(3):107–126, 2005.

[3] D. Bobrow, R. Gabriel, and J. White. CLOS in Context: The Shape
of the Design Space.Object-Oriented Programming – The CLOS
Perspective, 1993.

[4] M. Braux and J. Noye. Towards partially evaluating reflection in java.
Proceedings of Partial Evaluation and Program Manipulation, 2000.

[5] E. Ernst. Higher order hierarchies.Proceedings of ECOOP, 2003.

[6] E. Ernst, K. Ostermann, and W. Cook. A virtual class calculus.
Proceedings of POPL, 2006.

[7] R. Hinze. A new approach to generic functional programming.
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 119–132, 2000.

[8] D. Hutchins. Eliminating distinctions of class: Using prototypes to
model virtual classes.Proceedings of OOPSLA, 2006.

[9] A. Igarashi and B. Pierce. Foundations for virtual types. Proceedings
of ECOOP, 1999.

[10] N. Jones. Mix ten years later.Proceedings of the 1995 ACM
SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 24–38, 1995.

[11] N. Jones, C. Gomard, and P. Sestoft.Partial Evaluation and
Automatic Program Generation. Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1993.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of aspectj.Proceedings of ECOOP, 2001.

[13] R. Lämmel and S. P. Jones. Scrap your boilerplate: a practical design
pattern for generic programming.ACM SIGPLAN Notices, 38(3):26–
37, 2003.

[14] D. Leijen and E. Meijer. Parsec: Direct style monadic parser
combinators for the real world.Technical Report UU-CS-2001-35,
Departement of Computer Science, Universiteit Utrecht, 2001.

[15] C. Lopes.D: A Language Framework for Distributed Programming.
PhD thesis, 1997.

[16] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A disciplined
approach to aspect composition. 2006.

[17] H. O. Peri Tarr. Multi-dimensional separation of concerns and the
hyperspace approach.Proceedings of the Symposium on Software
Architectures and Component Technology: The State of the Art in
Software Development. Kluwer., 2000.

[18] F. Rivard. Smalltalk: a Reflective Language.Proceedings of
Reflection, 96:21–38, 1996.

[19] W. Taha. A gentle introduction to multi-stage programming. Domain-
Specific Program Generation, pages 30–50, 2003.

[20] W. Taha, H. Makholm, and J. Hughes. Tag Elimination and Jones-
Optimality. Proceedings of the Second Symposium on Programs as
Data Objects, pages 257–275, 2001.

[21] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231–248, 1990.

