
KALA: A Domain-Specific Solution to Tangled Aspect Code

Johan Fabry
INRIA Futurs - LIFL, Projet Jacquard/GOAL

Bâtiment M3
59655 Villeneuve d’Ascq, France

johan.fabry@lifl.fr

Nicolas Pessemier
INRIA Futurs - LIFL, Projet Jacquard/GOAL

Bâtiment M3
59655 Villeneuve d’Ascq, France

nicolas.pessemier@lifl.fr

1. Introduction
In multi-tiered distributed systems transaction management has
long been a mainstay of concurrency management. Transactions
were however originally conceived only for brief and unstructured
database accesses. Because of this they are a poor match for appli-
cations that wish to access data in a more structured way, or for a
relatively long time. Negative consequences of this mismatch are,
for example, that transaction throughput is only optimal when each
transaction has a very short life-time. The multiple shortcomings
of classical transactions are recognized by an important body of
work in the transaction management community. To address them,
many advanced transaction models (ATMS) have been developed,
including a formalism called ACTA [CR91]. Each of these ad-
vanced models addresses a subset of the known shortcomings of
classical transactions.

As with classical transactions, advanced transaction manage-
ment is a cross-cutting concern. We have therefore investigated how
it can be modularized into an aspect and developed the domain-
specific aspect language KALA [FD06]. KALA is based on the
ACTA formalism, and KALA programs declare how a particular
application uses an ATMS, as expressed in ACTA.

When performing this research, we encountered a problem in
the aspect code itself. We found that because the ATMS concern is
a complex concern it can be subdivided in multiple sub-concerns,
and that the code for these sub-concerns cross-cut the aspect itself.
This yields aspect code which itself tangles multiple concerns. We
therefore termed this phenomenon Tangled Aspect Code.

In this paper we describe how KALA is able to address the prob-
lem of Tangled Aspect Code through the use of domain informa-
tion. KALA was developed solely for the domain of ATMS, and
with the intent to tackle this problem. As a result the modulariza-
tion for sub-concerns offered by KALA is straightforward for the
programmer and the composition of sub-concerns requires no pro-
grammer intervention.

2. KALA in a Nutshell
2.1 Advanced Transaction Management
As we have said above, a number of ATMS have been developed,
each addressing a specific set of shortcomings of classical transac-

[copyright notice will appear here]

tions. We do not give an overview of these models here, as this
is outside of the scope of this paper. Instead we briefly discuss
two well-known models: Nested Transactions [Mos81] and Sagas
[GMS87]. These are illustrated in Figures 1 and 2, and we provide
a short description of these models next.

T

Tc'Tc

Tgc Tgc'

Figure 1. The Nested Transactions ATMS

Nested transactions [Mos81] is one of the oldest and easily the
most well-known ATMS. It enables a running transaction T to have
a number of child transactions Tc. Each Tc can view the data used
by T . This is in contrast to classical transactions, where the data
of T is not shared with other transactions. Tc may itself also have
a number of children Tgc, forming a tree of transactions. When
a child transaction Tc commits its data, this data is not written
to the database, but instead delegated to its parent T , where it
becomes part of the data of T . If a transaction Tx is the root of
a transaction tree, i.e. it has no parent, Tx’s data will be committed
to the database when T commits. Lastly, if a child transaction Tc
aborts, the parent T is unaffected. T is not required to also abort,
i.e. when it ends it may choose freely to either commit or abort.

S

T1 T2 T3
C1 C2

Figure 2. The Sagas ATMS

Sagas [GMS87] is, next to Nested Transactions, one of the old-
est ATMS and also arguably one of the most referenced ATMS in
the community. Sagas is tailored towards long-lived transactions.
Instead of one long transaction T , a saga S splits T into a sequence
of sub-transactions T1 to Tn. Each sub-transaction is a normal
classical transaction and this sequence is executed completely be-
fore the saga commits. To abort or rollback a running saga S, the
currently running sub-transaction Ti is aborted and the work of
already committed transactions T1 to Ti − 1 has to be undone,

1 2006/10/5

as their results have already been committed to the database. To
allow this, the application programmer has to define for each sub-
transaction Ti a compensating transaction Ci that performs a se-
mantical compensation action. To undo the work of T1 to Ti − 1,
C1 to Ci− 1 are run by the runtime transaction monitor in inverse
sequence, i.e. starting with Ci− 1.

As said above, and illustrated by these two examples, different
ATMS exhibit different concurrency management properties. This
allows a given application to choose the advanced model that pro-
vides the best match to the concurrency management properties it
requires. Also, if no matching model exists, it is possible to cre-
ate a new model that provides the properties required by the ap-
plication. However, as we argue in [Fab05] when using traditional
software engineering approaches, there is only a small degree of
separation of concerns between the ATMS concern and the other
concerns present in the application.

2.2 ACTA and KALA
In general, to use transactions in an application, the developer needs
to add transaction demarcation code, which is spread throughout
the entire application. Using aspects, however, previous work has
successfully achieved the modularization of the concern of classical
transaction management [KG02, RC03, SLB02].

Advanced transaction models also suffer from the problem of
cross-cutting demarcation code [Fab05]. Therefore, we created the
domain-specific aspect language called KALA [FD06] to modular-
ize advanced transaction management as an aspect for Java applica-
tions. KALA is based on the ACTA formalism for ATMS [CR91],
which is accepted in the community as covering a wide field of ad-
vanced transaction models. In ACTA, extra properties are given to
classical transactions, or properties of such transactions are mod-
ified, resulting in a collection of transactions that exhibits the be-
havior of an advanced model. The formalism declares three kinds
of properties: dependencies, views and delegation which are de-
clared between two transactions. The views and delegation proper-
ties correspond to viewing and delegation between them, which we
have mentioned above when discussing nested transactions. Depen-
dencies set relationships between two transactions and can be used
to, for instance, sequence multiple transactions or trigger the be-
ginning of a compensating transaction, which will be illustrated in
Sections 4.2 and 6.1.1. KALA reifies the ACTA constructs of de-
pendencies, views and delegation as the dep, view and del state-
ments in the language. A full discussion of KALA is outside of the
scope of this paper, instead we give a brief overview here. For a full
description we refer to [FD06, Fab05].

A KALA program specifies what dependencies, views and del-
egations apply at the begin, commit and abort time of a transaction.
As is the norm in multi-tier transactional systems, the life-cycle of
a transaction coincides with the life-cycle of a method. The trans-
action begins when the method begins, commits when the method
ends normally and aborts if the method ends with a (given type
of) exception. All data accesses within this method (and within the
methods called by this method) are included in the transaction. To
identify this method, the signature of the method is used, possibly
using wildcards, similar to AspectJ [asp06]. This yields the follow-
ing overall structure of the KALA declarations for a method (square
brackets indicate placeholders for actual KALA statements):

1 MethodSignature(ArgumentList){
2 [preliminaries]
3 begin { [begin time properties] }
4 commit { [commit time properties] }
5 abort { [abort time properties] }
6 }

Note that the depencency, view and delegation specifications in-
side a begin, commit and abort block are considered to happen in
the same atomic action. Therefore the sequence of these statements
within such a block is of no importance.

In order for dependencies, views and delegation to be applied to
two transactions the KALA code needs to be able to refer to these
transactions. This is performed through the use of a global naming
service. Within KALA code, a local reference to such a name, i.e.
an alias, is obtained through the alias statement. This statement
takes the alias for that transaction, and a Java expression that eval-
uates to the key that is looked up in the name service. This expres-
sion has access to the actual parameters of the method and to aliases
which have already been resolved. The alias self is always bound
to the currently executing transaction. An alias placed in prelimi-
naries is looked up immediately before the transaction starts, and
is accessible thoughout the remainder of the KALA code for that
method. Aliases placed in begin, commit and abort blocks are
looked up at that moment in the life-cycle of the transaction, and
are only accessible at that time. A transaction can be added to the
naming service, i.e. given a global name, using the name statement.
This statement takes an alias (which may be self), and a Java ex-
pression that evaluates to the key for the naming service. Note that,
contrary to dependencies, views and delegation, the sequence of
name and alias statements is important, as the expressions used
in these statements have access to already resolved aliases.

In addition to naming, KALA also provides support for groups.
Transactions can be added to a named group using the groupAdd
statements. KALA makes no distinctions between transactions and
groups of transactions, i.e. all statements can take groups or trans-
actions as arguments1.

KALA requires the programmer to perform manual memory
deallocation for transactions (equivalent to the free statement in
C++). This is performed through the terminate statement, which
takes as argument the alias of the transaction or group to be freed.
Termination can be performed at begin, commit or abort time
of a transaction. If the transaction being terminated has not yet
committed, it will be immediately forced to rollback.

Lastly, the preliminaries may contain an autostart statement.
This statement specifies that a separate transaction needs to be
started, in parallel to this transaction. The autostart specifies the
signature of the method corresponding to this transaction, a list of
actual parameters, and a KALA specification for this transaction.
Autostarts are used, for example, within the KALA specification of
a transaction Ti of a Saga S to specify the compensating transac-
tion Ci. This specification then also contains dependencies at be-
gin, commit and abort time of Ti that restrict Ci to only run if the
Saga is aborted.

3. Tangled Aspect Code
3.1 Sub-concerns in the Aspect
If we consider various ATMS from a conceptual point of view, we
find that these ATMS are not one monolithic block, but incorpo-
rate different design decisions. For example, consider how rollback
is handled in the Sagas ATMS: compensating transactions are exe-
cuted in the inverse sequence of the steps of the saga. Translated to
application code, i.e. methods, each step corresponds to a method,
as is each counterstep. If we consider conceptually the tasks that
need to be performed by the demarcation code for such a step, we
can infer that some parts of this code treat managing rollback of
the saga. This code performs the work of defining and starting up
compensating transactions, ensuring that these only begin when the

1 The only exception being that a group cannot be the destination of a
delegation operation.

2 2006/10/5

saga aborts, and that they run in the right sequence. All of these
low-level tasks comprise the code for one concern, which is man-
aging rollback of the saga.

We can indeed consider management of rollbacks a true concern
in this demarcation code, as it is a design decision of the ATMS
that lies conceptually at a higher level of abstraction than the im-
plementation details of the code, i.e. the various tasks of the code
we identified above. This corresponds to the original consideration
of a concern by Parnas [Par72] where he states that a module, i.e.
a concern, corresponds to the implementation of a design decision.
We claim that management of rollbacks is part of the design of the
ATMS, as different implementations of this concern can be eas-
ily envisioned. For example, we could specify that compensating
transactions run in the same sequence as the steps of the saga, or
even let the compensating transactions run in parallel, to attempt to
speed up saga rollback.

Sagas demarcation code will however contain more than code
for rollbacks. In addition to this, the general structure of the Saga
as a sequence of steps, where each step is itself a transaction, also
needs to be defined. In other words, if we reflect on the various tasks
performed by saga demarcation code, we find that this code treats
two different sub-concerns: first the management of the structure
of the overall transaction, and second the management of how
rollback is performed.

This conceptual decomposition of an ATMS into different sub-
concerns is not unique to the Sagas ATMS. We have performed a
similar analysis of various ATMS, and found that these are also
composed of multiple sub-concerns [Fab05]. In addition to the two
sub-concerns of structure and rollback handling identified above,
we have encountered the sub-concerns of view management and
delegation management. Note that the list of four sub-concerns
of ATMS is open-ended. Although we have identified these sub-
concerns in many ATMS, it is possible that a new ATMS contains
a sub-concern which we have not yet encountered.

To summarize, we should not consider an ATMS conceptually
as one monolithic block, but rather as a composition of a number
of sub-concerns. We have identified four such sub-concerns so far:
the structure of the advanced transaction, how rollback is handled,
the management of views and the management of delegation.

3.2 Tangled Aspect Code
If we wish to modify sub-concerns of an ATMS, or add imple-
mentations for new sub-concerns to an existing ATMS, the aspect
that modularizes the ATMS must take into account this require-
ment. The aspect must be structured in such a way that modifica-
tion of sub-concerns is easy, enabling easy creation of new ATMS
through changes in the implementation of these sub-concerns. In
other words, such a conceptual separation into modules should
therefore ideally also be present in the KALA code. This would
bring the well-known advantages of Separation of Concerns to the
level of the aspect.

We find, however, that such a separation into multiple modules
is absent from the KALA code. The reason for this is the primary
decomposition inherent in KALA code. KALA code reflects the
life-cycle of a transaction, and is therefore subdivided into three
different phases: a begin phase, a commit phase and an abort phase.
In contrast to this, the implementation of a sub-concern can affect
multiple phases in the life-cycle, and in one phase the code for
multiple sub-concerns can be present. For example, in Sagas the
code for the rollback concern is contained in the begin and commit
blocks of various steps, and in the commit and abort blocks of
the top-level Saga, as we will see in Section 4.2. As a result,
the aspect code for the ATMS concern tangles the multiple sub-
concerns present in the ATMS being implemented.

We can see this tangling as a case of the tyranny of the dominant
decomposition [TOHJ99]. The dominant decomposition in KALA
is the life-cycle of the transaction in begin, commit and abort
phases. The modularization of sub-concerns of an ATMS, however,
is orthogonal to time. One sub-concern can act at multiple points in
the life-cycle of a transaction. As a result, the sub-concerns cross-
cut the dominant decomposition, leading to code which is scattered
and tangled. In other words, a KALA program is a combination
of different sub-concerns and we see that the code of these sub-
concerns is tangled. We call this phenomenon, where the aspect
itself is a tangled mess of sub-concerns, tangled aspect code.

4. Separate Definition of Concern Code
Instead of having an ATMS as a monolithic block, we want to
apply the known benefits of separation of concerns [HVL95] to the
process of creating and modifying an ATMS. Applying separation
of concerns here, i.e. programming an ATMS in multiple modules,
will greatly ease implementation and modification of this ATMS.
This enables a new ATMS to be built, or an existing ATMS to be
adapted. This in effect tailors an ATMS to best fit the transactional
properties required by the application being developed.

We have seen above that these concerns cut across the dom-
inant decomposition of KALA code, which is the life-cycle of
a transaction. Therefore a separate modularization mechanism is
required for these concerns. KALA contains such a mechanism,
which allows separating the specification of the different concerns
in a straightforward manner by writing them as separate KALA
files. The composition of these modules into a complete specifica-
tion is fully automatic, and is discussed in the next section. The
straightforward modularization and automatic composition is pos-
sible because we used the properties of the domain when creating
KALA.

In this section, we show how, applied to a given application,
KALA can be used to define the different concerns of an ATMS
separately. We assume here that an analysis has first been made of
the different concerns present in the ATMS being used, as we have
performed in Section 3. The different concerns identified in such
an analysis, applied to an application, can then be written down
separately in multiple KALA files, i.e. one file per concern. We
show this by taking the Sagas ATMS we analyzed in Section 3.1,
and writing KALA code for this ATMS.

As a concrete example of KALA code for the use of Sagas,
we use the example of a bank transfer operation we introduced in
[Fab05]. This is part of an application for bank cashiers, servicing
customer at the teller window. The transfer operation is split in
three steps: a transfer, a printReceipt and a logTransfer
method, all called in sequence from a moneyTransfer method.
The first step performs the actual money transfer, the second step
prints out a receipt for the customer, and the third step updates
the global log of the bank. Note that we do not include the Java
code of the bank transfer operation here, as it is not relevant to this
discussion.

We identified in Section 3.1 that the Sagas ATMS is comprised
of two concerns: first the management of the structure of the over-
all transaction, and second the management of how rollback is per-
formed. To have an implementation of these transactional concerns
for the bank transfer operation, we now write KALA declarations
for all four methods first for the structure concern, and second for
the rollback concern.

4.1 Sagas: Structure
The first concern we implement here, is the structure of the saga.
Recall that we identified this concern as the management of the
overall structure of the saga, in which the steps perform their work.
The structure concern codifies the subdivision of the saga into

3 2006/10/5

multiple steps, allowing each step to obtain a reference to the top-
level saga, and ensures that after the saga has ended cleanup work
is performed.

Note that although we subdivide the discussion of the imple-
mentation of this concern into two parts, all the code for the struc-
ture concern is implemented in one file, as is indicated by the con-
tinuity in line number counting.

4.1.1 Saga Top-level
The first KALA declarations we show are for the top-level
moneyTransfer method and are given below. This code registers
itself in the naming service, such that the steps in the saga, shown
later, can obtain a reference to the saga. At commit and abort time,
the unique identifier of this saga is used to refer to a group name
which is therefore guaranteed to be unique for this saga. In this
group, the various steps of the saga will have registered themselves.
As a result, termination of this group implies termination of all the
steps of the saga, and together with termination of the saga itself
ensures proper cleanup is performed.

1 Cashier.moneyTransfer
2 (Account src, Account dest , int amt) {
3 name(self Thread.currentThread());
4 commit { terminate("ID" + self + "Step");
5 terminate(self); }
6 abort { terminate("ID" + self + "Step");
7 terminate(self); }
8 }

4.1.2 Saga Steps
The code of all the steps of the saga is virtually identical, the only
difference being the identification of the method corresponding to
each step. We therefore only show the code for the logTransfer
step. Each of these steps first require a reference to the top-level
transaction so as to, second, add itself to the group of steps. By
adding itself to the group of steps, it ensures that it will be termi-
nated when the saga ends, by the code either in line 5 or 7.

9 Cashier.logTransfer
10 (Account src, Account dest , int amt) {
11 alias (Saga Thread.currentThread());
12 groupAdd(self "ID" + Saga + "Step");
13 }

This concludes the code for the structure concern of the sagas
ATMS, applied to the bank transfer example. This code implements
the structure of the saga in multiple steps, with termination of
the steps when the saga ends. The following concern will add the
handling of rollbacks of this structure, yielding the behavior of the
Sagas ATMS.

4.2 Sagas: Rollback Handling
The second concern which we implement here, is rollback handling
for the saga. Recall that in order to rollback a saga, the currently
executing step is aborted, and that all committed steps are compen-
sated for by executing compensating steps in the reverse sequence
of step execution.

The KALA code below is an implementation of the above con-
cern, and is defined in a separate KALA file. Again, we subdivide
the discussion of the implementation in multiple parts, and the line
numbers show this code all belongs to one file.

4.2.1 Saga Top-level
The top level of the saga registers itself, as in the structure concern,
because the steps and compensating steps will place dependencies
on the sagas, as we see later. At commit and abort time, the group

of compensating steps is aborted, similar to what is performed in
the structure concern.

1 Cashier.moneyTransfer
2 (Account src, Account dest , int amt) {
3 name(self Thread.currentThread());
4 commit { terminate("ID" + self + "Comp");
5 terminate(self); }
6 abort { terminate("ID" + self + "Comp");
7 terminate(self); }
8 }

4.2.2 Last Step
In the last step of the saga, to implement the rollback concern,
a number of dependencies have to be set between the step and
the saga when the step begins. To set these dependencies, in lines
12 and 13, a reference to the saga has to be obtained, which is
performed in line 11. Saga ad self forces the Saga to abort if
this transaction aborts. self wd Saga states that if the Saga aborts
before this transaction ends, it is also forced to abort. Saga scd
self ensures that the Saga does not commit before this transaction
has committed.

9 Cashier.logTransfer
10 (Account src, Account dest , int amt) {
11 alias (Saga Thread.currentThread());
12 begin { dep(Saga ad self); dep(self wd Saga);
13 dep(Saga scd self); }
14 }

4.2.3 First and Second Step
The first step of the saga needs to declare the compensating trans-
action used when the saga rollbacks. It achieves this by using an
autostart statement in lines 18 thru 22, which compensates a
bank transfer simply by performing the inverse transfer operation.
The secondary transaction registers itself under a unique name in
line 21, so that in lines 23 and 26 a reference can be obtained to
this transaction to set the required dependencies. Also, the compen-
sating transaction adds itself to the group of compensating trans-
actions in line 22, ensuring it is properly terminated in line 4 or
6, when the saga ends. The dependencies on the compensating
transaction ensure that it does not begin unless this transaction has
committed (Comp bcd self), only begins if the saga aborts (Comp
bad Saga) and disallow it to abort in that case (Comp cmd Saga)

15 Cashier.transfer
16 (Account src, Account dest , int amt) {
17 alias (Saga Thread.currentThread());
18 autostart (transfer
19 (Account src, Account dest, int amt)
20 (dest, src, amt) {
21 name(self "ID" + Saga + "Comp");
22 groupAdd(self "ID" + Saga + "Comp"); });
23 begin { alias (Comp "ID" + Saga + "Comp");
24 dep(Saga ad self); dep(self wd Saga);
25 dep(Comp bcd self); }
26 commit { alias (Comp "ID" + Saga + "Comp");
27 dep(Comp cmd Saga);dep(Comp bad Saga);}
28 }

The second step of the saga is highly similar to the first step of
the saga, the only differences being a different autostart, and de-
pendencies being placed on the previous compensating transaction,
as can be seen below. A reference to the compensating transaction
of the first step of the saga is obtained in line 32. This allows the
CompPrev wcd Comp dependency to be placed in line 42, ensur-
ing that the previous compensating transaction begins after this has

4 2006/10/5

ended. In other words, this determines the sequence in which the
compensating transactions will run.

29 Cashier.printReceipt
30 (Account src, Account dest, int amt) {
31 alias (Saga Thread.currentThread());
32 alias (CompPrev "ID"+Saga+"Comp");
33 autostart (printTransferCancel
34 (Account src, Account dest, int amt)
35 (src, dest, amt) {
36 name(self "ID" + Saga + "Comp");
37 groupAdd(self "ID" + Saga + "Comp"); });
38 begin { alias (Comp "ID" + Saga + "Comp");
39 dep(Saga ad self); dep(self wd Saga);
40 dep(Comp bcd self); }
41 commit { alias (Comp "ID" + Saga + "Comp");
42 dep(CompPrev wcd Comp);
43 dep(Comp cmd Saga);dep(Comp bad Saga);}
44 }

This completes the KALA code of the concern of rollback
handling for the bank transfer operation using the sagas ATMS.
As there are no more concerns in this ATMS, this concludes the
KALA code for this example.

4.3 Conclusion
In this section we have shown how the implementation of a chosen
ATMS for a given application is modularized using KALA code.
In KALA, each module is implemented in a separate file. As an ex-
ample we have shown a bank transfer operation that uses the Sagas
ATMS. We have taken the decomposition of the Sagas ATMS, per-
fomed in Section 3.1, which identified two concerns, and given the
KALA code for each of these concerns.

This modularization frees us from having to write tangled aspect
code, which brings the benefits of separation of concerns to the
process of defining an ATMS as an aspect. Instead of having to
write aspect code which itself is tangled with multiple concerns,
with all the impediments this entails, we now cleanly separate each
concern in a separate KALA module.

5. Composing KALA Code
Given a definition of an ATMS concern in multiple modules, these
need to be composed to form the complete KALA program. Con-
ceptually, the concerns are combined before the ATMS aspect is
woven, because it is the combination of these concerns that forms
the complete definition of the ATMS. The KALA weaver, there-
fore, is not built to weave each concern of an ATMS separately
into the base code. Instead all KALA modules are combined into
one KALA file, describing how the ATMS is used, and this full
description is woven into the base code2.

Because of the domain-specific nature of KALA we were able
to fully take into account the properties of the domain, yielding
a composition mechanism that requires no programmer interven-
tion.This is mainly due to the inherent composition properties of
the ACTA model, which were taken into account when designing
the KALA language. As a result, composition of multiple KALA
modules is straightforward. In fact, composing multiple specifica-
tions in essence boils down to a simple merge, as we show here.

Conceptually, different KALA specifications declare that differ-
ent actions need to take place at a given time in the life-cycle of a
transaction: before the transaction begins, at begin time, at commit

2 Although this aspect code will be tangled aspect code, this is not an issue
since this code is but an intermediate representation which is not presented
to a programmer.

time or at abort time. In the composed file, therefore, for each of
these moments in the life cycle all the actions defined for that point
need to be performed. In other words, all the declarations that per-
tain to one moment in the life-cycle of the transaction have to be
gathered into one block of the resulting specification.

The sequence of statements for naming and grouping within this
composition matters, however, as an alias referred in a KALA state-
ment needs to have been previously looked up. Therefore, when
composing multiple KALA specifications, the partial ordering of
naming and grouping statements within each KALA file needs to
be preserved in the global file.

Considering in more detail the begin, commit and abort
blocks of KALA code, we can state that the sequence of the code
for setting dependencies, placing views, performing delegation and
termination, however, is irrelevant. This is because, as said in Sec-
tion 2.2, these are considered to happen in the same atomic action
of begin, commit or abort. Therefore, when composing a number
of begin, commit or abort blocks for the same method, their
dependency, view, delegation and terminate statements can be sim-
ply joined into one sequence which respects the partial ordering
of names and groups. The same observation holds for autostart
statements, as their sequence in the KALA code also is of no im-
portance. All autostart statements for one method are placed
before the begin block of the composed KALA specification.

We can implement the above composition by a simple merge,
the implementation of which is outlined next. Given that we have
a number of KALA specifications for one method and we need to
generate an output file:

1. Start the output file with the method signature suffixed with {.

2. For each specification, take the sequence of top-level declara-
tions and add them to the output file.

3. Write the start of a begin block to the output file.

4. For each specification take the sequence of begin declarations
and add them to the output file.

5. Write the close of the begin block, and the start of the commit
block to the output file.

6. For each specification take the sequence of commit declarations
and add them to the output file.

7. Write the close of the commit block, and the start of the abort
block to the output file.

8. For each specification take the sequence of abort declarations
and add them to the output file.

9. Write the close of the abort block and the closing } to the
output file.

There is one downside, however, to this simple merging, which
is name clashes: multiple modules should not define the same
names. If these modules redefine the name with the same target,
as in line 3 of both modules in the sagas example in Section 4,
this is not an issue. But if multiple modules define the same name
for a different target this will lead to wrongly placed dependencies,
views, delegation, and so on, yielding faulty code. Conceptually,
this issue can, however, be easily solved through a renaming or a
merge of names. Therefore we do not provide an outline of such an
implementation here.

The above is all which is required to compose multiple KALA
modules into one full program. Thanks to the properties of the
domain, which were taken into account when designing KALA,
we have a straightforward composition mechanism that requires no
programmer intervention.

5 2006/10/5

6. Building a New ATMS: Cooperating Nested
Transactions

In this section we show how we can use KALA to define a new
ATMS to fit a given application or class of applications. The goal
is to achieve an ATMS in which the transactional properties bet-
ter align with the transactional properties of the (class of) appli-
cation(s). We show this by creating a new ATMS, which we call
Cooperating Nested Transactions, that aims to achieve the high-
est possible performance for computations that are hierarchically
structured.

Before we introduce Cooperating Nested Transactions, we first
give a definition of the Nested Transactions ATMS in multiple
KALA modules. Second, we show how we can easily modify this
definition to yield the Cooperating Nested Transactions ATMS.

In this section, we do not provide example applications to which
the KALA code is applied. This is because as we solely wish to con-
centrate on the implementation of the ATMS, without considering
how this ATMS is used by an application. We will use placeholder
code, which is marked like this, when referring to base-level enti-
ties, such as method signatures. When these ATMS are used for a
given application, this placeholder code needs to be replaced by the
appropriate code for that application.

6.1 Nested Transactions
In Section 3.1 we established that Nested Transactions is composed
out of four different concerns: structure, handling of rollbacks, view
management and delegation of operations. We now write KALA
code for each of these concerns separately.

6.1.1 Structure
The structure of Nested Transactions is not fixed statically as in
Sagas, instead of this, at runtime a tree structure of transactions
is built. Each transaction that forms a part of the tree structure is
solely responsible for itself. Given such a tree structure, built at
runtime, there is however one restriction: a parent may not commit
before all its children have ended. Therefore a commit dependency
cd needs to be placed between a parent and each of its children.
This requires that each child obtain a reference to its parent before
placing this dependency, as shown in line 4 of the code below. We
achieve this by first letting each transaction name itself (line 2), so
that it can be referred to by its children, and second letting each
transaction obtain a reference to its parent by performing a lookup
in line 3.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 begin { dep(parent cd self); }
5 commit { terminate(self); }
6 abort { terminate(self); }
7 }

6.1.2 Rollback Handling
When rolling back a transaction which is a part of a tree of nested
transactions we need to ensure that if this transaction aborts, all its
children also abort. This is implemented first by letting each child
add itself to a group associated with the parent in line 4 of the code
below, and second by letting each transaction terminate its children
when aborting, in line 6 of the code below. Having each child add
itself to the group associated with the parent, however, also implies
that each parent needs to also clean up this group when committing,
which is performed in line 5.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 groupAdd(self "ID" + parent + "Children");
5 commit { terminate("ID" + self + "Children"); }
6 abort { terminate("ID" + self + "Children"); }
7 }

6.1.3 Delegation
Upon commit of a child its work is delegated to the parent, which is
performed in line 4 of the KALA code below. Again this requires a
reference to the parent, which in turn requires that each transaction
register itself.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 commit { del(self parent); }
5 }

6.1.4 View Management
Thirdly, in Nested Transactions, a child has a view on the interme-
diate results of its parent, which is achieved by setting the view at
begin time in line 4 of the code below.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 begin { view(self parent); }
5 }

This concludes the definition of the Nested Transactions ATMS.
We now show how we can straightforwardly modify this ATMS to
better fit a particular class of applications.

6.2 Cooperating Nested Transactions
One of the advantages of using the multi-tiered architecture in a
large-scale distributed system is the ability of this architecture to
provide a faster response time of the middle tier through load bal-
ancing. We can use parallelization on multiple servers to perform
sub-computations of a given algorithm in parallel, but we want
the entire computation to be performed as a single transaction to
prevent data inconsistency. In a hierarchically structured computa-
tion, we can have sub-computations as nested sub-transactions of
the main algorithm, and distribute sub-transactions over multiple
servers, to be performed in parallel.

We can consider using Nested Transactions as an ATMS for
this application: as sub-computations are sub-transactions they will
preserve data consistency, and can access the data of the parent.
Also, a failure in the sub-computation will not necessarily imply
that the entire computation is lost. This allows graceful recovery of
errors in the computation, without needlessly losing work. Having
sub-computations performed in parallel, however, may entail that
each of these sub-computations needs to be able to access the other
computations’ intermediate results, as they are supposed to coop-
erate, in parallel, to achieve the overall goal. This is not possible
when using nested transactions and therefore, we have adapted the
Nested Transactions ATMS to allow sharing between multiple sub-
transactions, yielding a new ATMS: Cooperating Nested Transac-
tions (CNT).

In CNT, all siblings of a parent transaction have access to
each other’s intermediate results though a view relationship. This,
however, has an impact when aborting a child transaction. The
siblings which have seen the inconsistent data of this child and
have not committed are also considered to be inconsistent and
should abort. This only applies to the sibling transactions that
run simultaneously, in parallel, with the aborting sub-transaction.

6 2006/10/5

Siblings that have committed before the aborter are not aborted,
and siblings that start after the abortion need not abort. This limits
the lost work in such cases to only include sibling sub-transactions
which run at the same time as the aborting sub-transactions. This is
an advantage of using CNT over running the entire computation
in one transaction. If we would do this and a sub-computation
aborts, automatically all of the work of the entire computation
would be lost. With CNT, only the work of the sub-computations
simultaneously running is lost.

We have implemented CNT in KALA by taking the implemen-
tation of Nested Transactions and modifying the concerns of view
management and rollback handling. This illustrates one of the ben-
efits of applying separation of concerns at the level of the ATMS
definition, easing modification of an ATMS as only the code for the
changing concerns needs to be considered, as we show next.

6.2.1 View Management
In CNT, all children of a given transaction can see each other’s
intermediate results. To implement this, in the code below, views
are set from this transaction to all siblings, and the reverse, in line
7. This, however, requires each child of a transaction to add itself
to the group of children of the parent, performed in line 4, and that
a reference to be obtained to this group, in line 5. Also, when a
transaction ends, the group of children of this transaction has to be
removed by the system, which is performed in lines 8 and 9 of the
code below.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent extends expression);

4 groupAdd(self "ID" + parent + "Children");
5 alias(siblings "ID" + parent + "Children");
6 begin { view(self parent);
7 view(self siblings); view(siblings self); }
8 commit { terminate("ID" + self + "Children"); }
9 abort { terminate("ID" + self + "Children"); }

10 }

6.2.2 Rollback Handling
When performing rollback, siblings of the erroneous transaction
should also abort, as they have seen the intermediate state of the
aborting transaction. We cannot modify transactions that have al-
ready committed, but we can abort all currently running siblings
of the aborting transaction, which is performed by the terminate
statement in line 7.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 groupAdd(self "ID" + parent + "Children");
5 commit { terminate("ID" + self + "Children"); }
6 abort { terminate("ID" + self + "Children");
7 terminate("ID" + parent +"Children"); }
8 }

7. Conclusion
KALA was designed to enable the modular specification of ATMS,
avoiding the need to write tangled aspect code. In this paper we
introduced how KALA enables the application of separation of
concerns in the process of defining an ATMS.

In KALA, each concern can straightforwardly be written in a
separate module and the composition does not require any pro-
grammer intervention. This is thanks to the domain-specific nature
of KALA, where the properties of the domain were extensively

taken into account when defining the modularization and compo-
sition mechanism.

We have shown how two existing ATMS can be programmed as
KALA modules, namely Nested Transactions and Sagas. Further-
more, we described how a new ATMS: Cooperating Nested Trans-
actions was created by modifying a number of modules from an
existing ATMS, in this case Nested Transactions. This shows the
benefit of modularization in KALA code, i.e. applying separation
of concerns when defining an ATMS.

Acknowledgments
Thanks to Denis Conan for fruitful discussions when considering
the topic of Tangled Aspect Code and thanks to Theo D’Hondt for
supporting this research.

References
[asp06] The AspectJ project, 2006. http://eclipse.org/aspectj/.

[CR91] Panos K. Chrysanthis and Krithi Ramamritham. A formalism
for extended transaction models. In Proceedings of the 17th
International Conference on Very Large Data Bases, pages
103–112, 1991.

[Fab05] Johan Fabry. Modularizing Advanced Transaction Manage-
ment - Tackling Tangled Aspect Code. PhD thesis, Vrije Uni-
versiteit Brussel, Vakgroep Informatica, Laboratorium voor
Programmeerkunde (PROG), July 2005.

[FD06] Johan Fabry and Theo D’Hondt. KALA: Kernel aspect
language for advanced transactions. In Proceedings of the
2006 ACM Symposium on Applied Computing Conference,
2006.

[GMS87] Hector Garcia-Molina and Kenneth Salem. Sagas. In
Proceedings of the ACM SIGMOD Annual Conference on
Management of data, pages 249 – 259, 1987.

[HVL95] Walter L. Hürsh and Cristina Videira Lopes. Separation of
concerns. Technical report, College of Computer Science,
Northeastern University, 1995.

[KG02] Jörg Kienzle and Rachid Guerraoui. AOP: Does it make
sense? - the case of concurrency and failures. In Proceedings
of ECOOP 2002. Springer Verlag, 2002.

[Mos81] J. Eliot B. Moss. Nested Transactions: An Approach to
Reliable Distributed Computing. PhD thesis, Massachusetts
Institute of Technology, 1981.

[Par72] David L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053–1058, 1972.

[RC03] Awais Rashid and Ruzanna Chitchyan. Persistence as an
aspect. In 2nd International Conference on Aspect-Oriented
Software Development. ACM, 2003.

[SLB02] Sérgio Soares, Eduardo Laureano, and Paulo Borba. Imple-
menting distribution and persistence aspects with AspectJ. In
Proceedings of OOPSLA 02. ACM, 2002.

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley
M. Sutton Jr. N degrees of separation: Multi-dimensional
separation of concerns. In International Conference on
Software Engineering, pages 107–119, 1999.

7 2006/10/5

