
Towards a Domain-Specific Aspect Language
for Virtual Machines

– Position Paper –

Yvonne Coady Celina Gibbs
University of Victoria, Canada

ycoady@cs.uvic.ca, celinag@uvic.ca

Michael Haupt
Darmstadt University of Technology /
Hasso Plattner Institute for Software

Systems Engineering, Germany
michael.haupt@hpi.uni-potsdam.de

Jan Vitek Hiroshi Yamauchi
Purdue University, USA

{jv,yamauchi}@cs.purdue.edu

Abstract
High-level language virtual machines, e. g., for the Java program-
ming language, offer a unique and challenging domain for aspects.
This position paper motivates the need for an aspect-oriented lan-
guage designed precisely for this domain. We start by overviewing
examples of some of the crosscutting concerns we have refactored
as aspects in VMs, and then demonstrate how mainstream aspect-
oriented programming languages need to be augmented in order to
elegantly implement these and similar concerns. We believe current
join point and advice models are not expressive enough for this do-
main. Predominantly this is due to the fact that the concept of a
point in the execution of the VM requires the ability to explicitly
specify subtle issues regarding system state and services. Finally,
the paper outlines, based on a design view on virtual machines, the
shape of a possible domain-specific aspect language for the imple-
mentation of such systems.

1. Introduction
A virtual machine—virtual machines in the context of this paper
are always high-level language virtual machines [12] such as the
Java virtual machine—can be seen as providing several services to
the application it runs, such as memory management, execution (in-
terpreted or JIT-compiled), adaptive optimisation, thread manage-
ment, synchronisation, and so forth. These services often interact
closely, and these interactions’ work flows are non-trivial.

When adopting a view that regards each such service as being
a concern, the crosscutting nature of the services and their inter-
actions becomes perceivable. Further considering that future VMs
could customise services on the basis of application-specific be-
haviour [18], it becomes clear that virtual machines call for em-
ploying aspect-oriented programming in their implementations.

As an example, take the cooperation of the execution, organiser
and controller services in the Jikes RVM’s [2, 3, 13] adaptive op-
timisation system [4]. The execution service is that part of the VM
actually running an application; albeit it is not explicitly modelled
as a dedicated service in the Jikes RVM, viewing it as such sup-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DSAL ’06 October 23, 2006, Portland, Oregon, USA.
Copyright c© 2006 the authors.

ports our notion of VMs as collections of services. Organiser ser-
vices are responsible for collecting performance data and issuing
optimisation suggestions. The controller gathers such suggestions
and decides on whether they should be put into action.

In this setting, an organiser observing call edge hotness may
be signalled by the execution service that a particular call edge
has been executed so-and-so many times, and the organiser may
issue an optimisation request when that call edge exceeds a certain
threshold. Though optimisation based on edge hotness is straight-
forward to describe, its current implementation requires using sev-
eral threads and queues for their communication. The logic cuts
across the virtual machine and is expressed only in an implicit way,
by means of attaching queues to threads appropriately.

Several attempts have been made to actually utilise AOP in
implementing virtual machine services. We focus on two particular
examples in this work within Java-in-Java virtual machines. The
first example is GCSpy, a heap visualiser [16], which has been
introduced to the Jikes RVM using AspectJ [14, 5]. The second
example is an implementation of software transactional memory
(STM) in the OpenVM [15].

Observing the examples’ utilisations of AOP constructs, it is
interesting to see that, in both cases, the implementors had to go
to considerable length to realise their particular VM services as
crosscutting concerns. The observation has led to the recognition
of some shortcomings of existing AOP languages that in turn call
for dedicated modelling mechanisms for crosscutting in the virtual
machine implementation domain.

The structure of this position paper is as follows. The next Sec-
tion will briefly describe the aspect-oriented realisation of GCSpy
in the Jikes RVM and of STM in the OpenVM, respectively. Section
3 will describe the identified shortcomings. Section 4 will present
an initial proposal for some characteristics of a domain-specific
aspect language for virtual machine implementations. Not all of
the proposed language mechanisms are necessarily specific to the
virtual machine implementation domain: some merely introduce a
higher level of abstraction over generally applicable AOP language
mechanisms, albeit in a way allowing for the declarative expression
of domain-specific requirements. Section 5 summarises the paper
and outlines future work directions.

2. Case Study: GCSpy and STM
Our experience with aspects in the VM domain include two re-
search systems developed in Java, the Jikes RVM and the OpenVM.
In both cases, we used standard AOP mechanisms provided by As-
pectJ, as described in the high-level overview in the subsections
that follow.



2.1 The GCSpy Aspect
GCspy is a heap visualisation framework designed to visualise a
wide variety of memory management systems. A system as com-
plex as a VM benefits greatly from non-invasive, pluggable tools
that provide system visualisation while minimising the effects on
that system. Visualisation tools such as GCSpy inherently have
many fine-grained interaction points that span the system they are
visualising, lending themselves to an aspect-oriented implementa-
tion.

GCSpy-specific code interacts with the base RVM in order to
establish two things: (1) to gather data before and after garbage
collection, and (2) to connect a GCSpy server and client-GUI for
heap visualisation. Details associated with the GCSpy aspect are
overviewed in the table below. The code touches 12 classes, has a
1:1 ratio of pointcuts to advice, and uses a collection that spans
before/after/around advice and can be further characterised as a
‘heterogenous’ concern [8].

GCSpy in RVM
Classes Involved 12
Pointcuts 15
Before Advice 5
After Advice 6
Around Advice with Proceed 2
Around Advice without Proceed 2
LOC in Aspect 126

2.2 The STM Aspect
Historically, concurrent access to shared data has been controlled
using mutual-exclusion locks and condition variables where crit-
ical sections are identified with a language-specific demarcation.
Software transactional memory (STM) provides a declarative style
of concurrency control, allowing programmers to work with the
high level abstraction of software-based transactions. The abstrac-
tion replaces critical sections with transactions, which can be in
one of several possible states and can be manipulated with a set of
well-defined operations.

Modifying the OpenVM to support STM involved a series of
changes that lent themselves to an aspect-oriented implementa-
tion. The details of this AspectJ implementation are overviewed
in the table below. The code touches 13 classes, has a 1:1 ratio of
pointcuts to advice, and employs the heavy use of non-proceeding
around advice.

STM in OpenVM
Classes Involved 13
Pointcuts 22
Before Advice 1
After Advice 3
Around Advice with Proceed 4
Around Advice without Proceed 14
LOC in Aspect 114

3. AOP in VMs: Current Shortcomings
Modularity within the implementation of a VM is generally chal-
lenging [6]. Implementations tend to rely on the “black art” of fine-
grained optimisation within a predominantly monolithic system.
But more recent implementations of virtual machines have shown
that modularity and performance can indeed co-exist, and bode well
for a future were JVMs can be more easily customised according
to application-specific needs [18].

In previous work, we have demonstrated how the Jikes RVM’s
modularity can be enhanced even with a naı̈ve implementation of
aspects, and how these aspects impact system evolution [11]. Here,
we consider a more qualitative assessment of the representations
of the aspects themselves, and the ways in which AspectJ could
be augmented to better support the needs of crosscutting concerns
in this domain. In our experience, we have determined the need to
explicitly define principled points in the execution of the VM in
terms of a combination of current system state and a composition
of system services. The following subsections consider the ways in
which domain-specific needs outstrip current join point, pointcut
and advice models for AspectJ [14].

3.1 Join Points in VMs
The AspectJ joint point model was designed according to princi-
pled points in the execution of a program, such that join points
remain stable under a stable interface. Similarly, a characteristic
required of domain-specific join points is stability across inconse-
quential changes as well as being understandable to a typical VM
programmer. It is our experience that the types of join points—both
static and dynamic—exposed by most existing join point models
are not sufficient for expressing the special needs of crosscutting
concern composition in virtual machine implementations. We be-
lieve a domain-specific aspect language for VMs could adhere to
the stability characteristic offered by traditional join points, while
augmenting the model with further support for meaningful and
much needed service composition. We believe one of the interest-
ing challenges in this work is that, in the domain of VMs, this re-
quires simultaneous attention to both higher-level abstractions and
lower-level details.

For example, the current AspectJ-based implementation of GC-
Spy and STM services both require a largely 1:1 pointcut to advice
ratio as shown in Sec. 2. There is little redundancy of advice as
they apply to specific points in the execution of the system. As a
result, the aspects are relatively large and arguably difficult to un-
derstand from a high-level perspective. Though they improve the
ability for developers to reason about their internal structure and
external interaction, the improvement is arguably less compelling
than a higher-level representation may be able to achieve. To get a
sense of what the AspectJ-based implementation looks like in terms
of implementation, four fine-grained pointcut/advice pairs are re-
quired just to ensure GCSpy starts properly when the VM boots. A
similar phenomenon exists in the STM aspect. An abstracted view
of the GCSpy code follows.

before(): execution(* Plan.boot ()) {
Plan.objectMap = new ObjectMap ();
Plan.objectMap.boot ();

}

before(VM_Address ref):
args(...) && execution(* Plan.postCopy (...)) {

Plan.objectMap.alloc (...);
}

before(VM_Address original ):
args(...) && execution(* Plan.allocCopy (...)) {

Plan.objectMap.dealloc (...);
}

void around(VM_Address ref ,..) :
args(...) && execution(* Plan.postAlloc (...)) {

if (allocator == Plan.DEFAULT_SPACE
&& bytes <= Plan.LOS_SIZE_THRESHOLD) {

Plan.objectMap.alloc (...);
else

proceed (...);
}



We consider the possibility to define such a concern as a higher-
level abstraction, at the granularity of a service. We envision this to
include startup parameters that would specify information such as
whether it is started in a separate thread, whether the application
triggers it, or other threads under certain circumstances trigger
it. This high-level abstraction shields the VM programmer from
knowledge of the fine-grained points at which the service interacts
with other services, shifting the complexity to the domain-specific
aspect language processor. In the case of the startup of GCSpy, the
GCSpy service interacts with the VM boot service. An example of
GCSpy’s interaction with the VM boot service is further illustrated
in Sec. 4.

In terms of requirements along the lines of a finer granularity
than currently allowed by AspectJ’s pointcut model, another prob-
lem exhibited in both the GCSpy and STM aspects is the aggressive
refactoring of the VM code they crosscut in order to expose appro-
priate join points. In [17], Siadat et al. provide results that sug-
gest an intolerable amount of refactoring to expose sufficient join-
points in systems code. Refactorings resulting from naı̈ve aspect-
oriented implementations yielded either (a) empty methods, or (b)
new methods that do not necessarily enhance the system. They even
break modularity by introducing methods for which no abstraction
is required. We would prefer ways to accomplish more explicit fine-
grained inter-service relationships within VMs. Our experience in
this domain has lead us to conclude that current join point models
are not fine-grained enough to be highly effective within VMs.

3.2 Pointcut Descriptors
Pointcut descriptors determine whether a given join point matches a
point in the execution of the VM. In our experience, virtual machine
services may expose some points where other services may inter-
act and often inherently require access to dynamic, often shared,
VM system state. For example, the execution concern may expose
a point indicating that a certain call edge hotness has exceeded a
given threshold, which might be interesting for the adaptive op-
timisation concern. Similarly, the generalisation of memory man-
agement systems monitored by GCSpy, or controlled by STM, also
lend themselves to this scenario, where one service is interested in
points in the execution of the composed system only if system state
is appropriate.

The circumstances in which an optimisation request is to be
generated are cumbersome to express using the pointcut language
present in AspectJ. The pointcut must match only if the call edge
hotness actually exceeds the threshold; as long as a call edge’s invo-
cation count is less than the threshold, the optimisation aspect is in
the “do not optimise” state, which it leaves in the moment the count
exceeds the threshold. As soon as another, greater threshold is ex-
ceeded, the aspect may choose an even higher level of optimisation
for the call edge. This basically constitutes a stateful aspect [10]
and could be expressed using the appropriate means, e. g., trace-
matches [1].

We would like to stress that this kind of pointcut is not specific
to the domain of virtual machine implementations and hence does
not actually constitute a need for a domain-specific language con-
struct. It is rather the case that stateful aspects of this kind charac-
teristically occur in the domain. Still, a declarative way of express-
ing them, other than a generic one as seen in the tracematch syntax,
may be more viable by means of introducing greater abstraction.

3.3 Advice
Advice supply a means of specifying code to run at a join point.
It is important for a domain-specific language to carefully consider
the nature of the VM domain. It is unacceptable, within this do-
main, to introduce possibly prohibitive performance penalties, or
dramatic increases in the system’s memory footprint. Returning to

the adaptive optimiser example mentioned above, if the execution
service signals sufficient call edge hotness, the optimising service
actually should not necessarily kick in immediately. In this case,
it could harm the VM’s performance to optimise every single call
edge as the execution service sees it fit for being optimised. The
VM should instead wait until there are ample time and resources
available. Usually, this is implemented using separate threads and
a queue storing requests (as in the Jikes RVM; cf. above). The two
concerns interact in a detached way; they utilise asynchronous ad-
vice [7], as met in, e. g., the AWED language [9].

Asynchronous advice cannot be expressed directly using simple
AspectJ mechanisms, as the required queues and associated state
have to be introduced as explicit data structures. Although there
is no such concept as an asynchronous advice in traditional AOP
advice models, we believe this to be highly desirable in VMs. Given
that there are very likely many VM services that do not interact
synchronously, modeling such services as crosscutting concerns
calls for providing a mechanism allowing for such definitions.

4. A DSAL for Virtual Machines
Based on our experience with aspects in VMs so far, we believe a
domain-specific aspect language for virtual machines must address
the following issues:

1. Many common services in a VM can be structured as crosscut-
ting concerns. An according DSAL should provide a high-level
view on VM abstractions and their corresponding implementa-
tion that allows for expressing virtual machine services as mod-
ules of their own, explicitly specifying their characteristics and
relations to other services. The abstractions should be general-
isable across multiple VMs, enabling the services to be gener-
alisable as well.

2. Existing join point models are not sufficient to express the ra-
tionale and type of interaction between the concerns found in a
VM. A DSAL for VMs should allow for exposing types of join
points met in virtual machines, for expressing them in appropri-
ate pointcuts, and for specifying advice that should run at those
points in meaningful ways (synchronously/asynchronously).

Regarding the first issue, a VM service should be expressible as
a single, configurable module in terms relative to core VM abstrac-
tions. For a simple example, a completely asynchronous service
(running in a dedicated thread) could be succinctly expressed like
this:

detached service AdaptiveOptimiser { ... }

or advice associated with a boot-time sequence might be expressed
like this:

service GCSpy {
during(VMbooting ): { ... }
...

}

with the DSAL weaver knowing about the places to join to in terms
of boot-time logic, as signified by during. Of course, there may be
cases where it is necessary to specify the order of service startups,
in case of possible conflicts.

Each service should also make clear which points it exposes
to others, establishing a clear interface for crosscutting behaviour.
For example, in the case of the STM aspect, it may be possible to
apply either optimistic or pessimistic concurrency control strategies
depending on the level of conflict in the system. The points at
which these different concurrency control services could be applied
should be exposed by the STM service.

As for adaptive optimisation, the circumstance that a method
m2() should be inlined in m1() when it has been called therefrom



more than 100 times could be expressed like this, as part of an
organiser service:
detached service CallEdgeOrganiser {

whenever(VM_Method m1 , VM_Method m2):
edgehotness(m1 ,m2) exceeds 100 {

inline(m2 , m1);
}

}

In this example, the whenever advice type means asynchronous
advice execution, and the exceeds comparison operator implies
that the edgehotness value must exceed the given threshold for the
pointcut to match. The edgehotness value, by the way, is exposed
from the execution service.

5. Summary
Our experience with aspects in VMs leads us to believe that this do-
main could benefit greatly from VM-specific AOP mechanisms. In
this paper, we have argued this point based on our sample aspects in
the RVM, the OpenVM, and additionally reasoning about a com-
mon optimisation scenario. We also have described the ways we
believe the join point model in AspectJ could be augmented to suit
this domain. Based on these observations, we have proposed to re-
gard crosscutting concerns in virtual machines as a special domain
of aspects, requiring support in the form of dedicated language ex-
pressions.

Future work in this area will focus on a close examination
of crosscutting in high-level language virtual machines. Based on
results from this analysis, a more complete critique of existing AOP
models will be formulated, along with a more detailed version of
the proposed domain-specific aspect language.

References
[1] C. Allan et al. Adding Trace Matching with Free Variables to AspectJ.

In Proc. OOPSLA 2005, pages 345–364. ACM Press, 2005.

[2] B. Alpern, A. Cocchi, D. Lieber, M. Mergen, and V. Sarkar.
Jalapeño—a compiler-supported java virtual machine for servers.
ACM SIGPLAN 1999 Workshop on Compiler Support for System
Software (WCSSS ’99), May 1999.

[3] B. Alpern et al. The Jalapeño Virtual Machine. IBM Systems Journal,
39(1):211–238, February 2000.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive
Optimization in the Jalapeño JVM. In OOPSLA 2000 Proceedings,
pages 47–65. ACM Press, 2000.

[5] AspectJ Home Page. http://www.eclipse.org/aspectj/.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water? High
Performance Garbage Collection in Java with MMTk. In ICSE, pages
137–146, 2004.

[7] M. Cilia, M. Haupt, M. Mezini, and A. P. Buchmann. The conver-
gence of aop and active databases: Towards reactive middleware. In
Proc. GPCE 2003, volume 2830, pages 169–188. Springer, 2003.

[8] A. Colyer and A. Clement. Dlarge-scale aosd for middleware. In
AOSD ’04: Proceedings of the International Conference on Aspect-
Oriented Software Development, pages 56–65. ACM Press, 2004.

[9] R. Douence, D. Le Botlan, J. Noye, and M. Sudholt. Concurrent
aspects. In Proc of GPCE. Springer, 2006.

[10] R. Douence, P. Fradet, and M. Sudholt. A framework for the detection
and resolution of aspect interactions. In Proc of GPCE, pages 173–
188. Springer, 2002.

[11] C. Gibbs, R. Liu, and Y. Coady. Sustainable system infrastructure and
big bang evolution: Can aspects keep pace? In Proc. ECOOP 2005.
Springer, 2005.

[12] J. E. Smith and R. Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan-Kaufmann, 2005.

[13] The Jikes Research Virtual Machine. http://jikesrvm.
sourceforge.net/.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In J. Lindskov Knudsen, editor,
Proc. ECOOP 2001, volume 2072 of LNCS, pages 327–353. Springer,
2001.

[15] OpenVM Home Page. http://ovmj.org/.

[16] T. Printezis and R. Jones. Gcspy: an adaptable heap visualisation
framework. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, pages 343–358. ACM Press, 2002.

[17] J. Siadat, R. Walker, and C. Kiddle. Optimization aspects in
network simulation. In AOSD ’06: Proceedings of the International
Conference on Aspect-Oriented Software Development, pages 122–
133. ACM Press, 2006.

[18] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selection of
application-specific garbage collectors. In ISMM ’04: Proceedings
of the 4th international symposium on Memory management, pages
49–60. ACM Press, 2004.

http://www.eclipse.org/ aspectj/
http://jikesrvm.sourceforge.net/
http://jikesrvm.sourceforge.net/
http://ovmj.org/

	Introduction
	Case Study: GCSpy and STM
	The GCSpy Aspect
	The STM Aspect

	AOP in VMs: Current Shortcomings
	Join Points in VMs
	Pointcut Descriptors
	Advice

	A DSAL for Virtual Machines
	Summary

