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Abstract
Domain-specific languages (DSLs) can greatly ease program
development compared to general-purpose languages, but
the cost of implementing a domain-specific language can be
prohibitively high compared to the perceived benefit. This is
more pronounced for narrower domains, and perhaps most
acute for domain-specific aspect languages (DSALs).

A common technique for implementing a DSL is writ-
ing a software library in an existing programming language.
Although this does not have the same syntactic appeal and
possibilities as a full implementation, it is a technique familiar
to most programmers, and it can be done cheaply compared
to developing a full DSL compiler. Subsequently, the desired
notation may be implemented as a simple syntactic prepro-
cessor. The cross-cutting nature of DSALs, however, makes it
difficult to encapsulate these in libraries.

In this paper, we show a technique for implementing a
DSAL as a library+notation. We realize this by implementing
the library in a program transformation system and the
notation as a syntactic extension of the subject language.
We discuss our experience with applying this technique to
multiple kinds of DSALs.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.2.11 [Soft-
ware Architectures]: Langauges, Domain-specific architec-
tures; D.3.4 [Programming Languages]: Processors—Translator
writing systems and compiler generators

General Terms Design, Languages

Keywords Domain-Specific Aspect Languages, Aspect-
Orientation, Program Transformation

1. Introduction
The implementation of domain-specific abstractions is usu-
ally done by way of libraries and frameworks. Although
this provides the semantics of the domain, it misses out on
good notation and many optimisation opportunities. Imple-
menting domain specific languages by adding notation (syn-
tax) to a library, and then programming a simple compiler
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that translates from the notation into equivalent library calls
is an easy and powerful technique, which is cost-effective
in many larger domains. Both the libraries and the sim-
ple compiler can be implemented in general purpose lan-
guages without too much effort, and it is important to note
that the library need not be implemented in the same lan-
guage as the compiler. If the “library” language supports
syntax macros, like Scheme [16], or has a sufficiently pow-
erful meta-programming facility, like C++ templates [1], the
translation task may be accomplished through the inherent
meta-programming constructs of this language. Otherwise,
a stand-alone preprocessor is commonly used. For example,
adding complex numbers or interval arithmetic to Java, with
an appropriate mathematical notation, can be accomplished
by writing or reusing a Java library, and writing a simple
translator from the mathematical notation into OO-style calls.
The approach of adding notation to (object-oriented) libraries
was explored in the MetaBorg project [12], where the subject
language Java was extended in various ways using Stratego
as the meta-programming language.

For domain-specific aspect languages, the translation
story is different. Behind the notation visible to the pro-
grammer lie cross-cutting concerns which may reach across
the entire program, possibly requiring extensive static anal-
ysis to resolve. The straight-forward translation scheme into
library calls for the subject language is not applicable as we
are no longer dealing with basic macro expansion. Instead,
we shall view aspects as meta-programs that transform the
code in the base program. These meta-programs may be im-
plemented with transformation libraries in a transformation
language (which may be different from the subject language).
This allows us to consider DSALs as syntactic abstractions
over transformation libraries, analogous to the way DSLs are
syntactic abstractions over base libraries in the subject lan-
guage. That is, we do not translate the DSAL notation into
library calls in the subject language, but rather to library calls
in the transformation language. Provided that the transfor-
mation language has a sufficiently powerful transformation
library for the subject language, writing a transformation li-
brary extension for a domain-specific aspect is an easy task.
We will demonstrate this technique by example, through the
construction of Alert, a small error-handling DSAL extension
to the Tiny Imperative Language (TIL).

The main contributions of this article are: A discussion of
how the library + notation method for DSLs can be applied to
DSALs, if the library is implemented in a meta-language;
an example of the convenience of employing a program
transformation language in the implementation of DSALs,
compared to implementation in a general-purpose language;
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and a discussion of our experience with this technique for
several different subject languages and aspect domains.

The paper is organised as follows. We will begin by
briefly introducing our DSAL example and the TIL language
(Section 2), before we discuss the implementation of our
DSAL using program transformation (Section 3). Finally, we
discuss our experiences and related work (Section 4), then
offer some concluding remarks (Section 5).

2. The Alert DSAL
Handling errors and exceptional circumstances is an impor-
tant, yet tedious part of programming. Modern languages
offer little linguistic support beyond the notion of exceptions,
and this language feature does not deal with the various
forms of cross-cutting concerns found in the handling of er-
rors, namely that the choice of how and where errors are han-
dled is spread out through the code (with ifs and try/catch
blocks at every corner), leading to a tangling of normal code
and error-handling code. Also, the choice of how to handle
errors is dependent on the mechanism by which a function re-
ports errors—checking return codes is different from catching
exceptions, even though both may be used to signal errors.
Confusingly, even the default action taken on error depends
on the error reporting mechanism, from ignoring it (for return
codes and error flags) to aborting the program (exceptions).

The Alert DSAL allows each function in a program to de-
clare its alert mechanisms—how it reports errors and other
exceptional situations that arise, and allows callers to specify
how alerts should be handled (the handling policy), indepen-
dent of the alert mechanism. We use the word alert for any
kind of exceptional circumstance a function may wish to re-
port; this includes errors, but may also be other out-of-band
information, such as progress reports. Typical examples of
alert mechanisms are exceptions, special return values (com-
monly 0 or -1) or global error flags (errno in C and POSIX,
for instance). Ways of handling alerts include substituting
a default value for the alerting function’s return code; log-
ging and continuing; executing recovery code; propagating
the alert up the call stack; aborting the program, or simply
ignoring the alert.

The alert extension is a good example of a domain-specific
aspect language. It allows separation of several concerns: the
mechanism (how an alert is reported) is separated from the
policy (how it is handled), and code dealing with alerts is
separated from code dealing with normal circumstances. The
granularity of the policies (i.e., to what parts of the code
they apply) can be specified at different scoping levels, from
expressions and blocks to whole classes and packages.

Separating normality and exceptionality has already been
demonstrated with AspectJ [23], but the AspectJ solution is
less notationally elegant, and fails to separate mechanism
from policy (it only deals with exceptions).1 Using domain-
specific syntax makes the extension easier to deal with for
programmers unfamiliar with the full complexity of general
aspect languages. Our alert extension is described in full in
[6]. Here, we will look at the implementation of a simplified
version for the Tiny Imperative Language.

2.1 The TIL Language

The Tiny Imperative Language (TIL) is a simple imperative
programming language used for educational [10] and com-

1 We are not experts on aspect orientation, but we believe that the full
separation of concerns available with our alert system is difficult if
not impossible to achieve with existing general aspect languages.

Alert declaration. Alert declarations are given after the regular
function declaration. Actual arguments and the function’s return
value are available in the alert condition expressions. Pre-alerts have
a condition that is checked before a call to the function and typically
involve checks on the arguments; post-alerts are checked after the
call has returned, and typically involve the return code (accessible
as the special variable value, legal only in alert conditions and
handlers.).
FunDecl AlertDecl -> FunDecl
"pre" Exp "alert" Id -> AlertDecl
"post" Exp "alert" Id -> AlertDecl
"value" -> Exp

Figure 1. Grammar for TIL function declarations with alert
extension.

parison purposes in the program transformation community.
The grammar for TIL is given in the appendix (Section A). A
TIL program consists of a list of function definitions followed
by a main program. TIL statements include the usual if,
while,for and block control statements, variable declarations
and assignments. Expressions include boolean, string and in-
teger literals, variables, operator calls and function calls. We
will use the name TIL+Alert for the extended TIL language.

2.2 Alert declarations and handlers

An alert declaration specifies a function’s alert mechanisms.
Our simple extension allows two ways of reporting alerts; via
a condition which is checked before a call, or via a condition
checked after a call. The pre-checks allows a function to
report invalid parameters (before the call, avoiding the need
for checks within the function itself), while the post-checks
can be used for testing return values. The syntax for alert
declarations is given in Figure 1. As an example, the following
function definition declares that the function lookup raises
the alert Failed if the return value is an empty string:

fun lookup(key : string) : string
post value == "" alert Failed

begin ... end

The following declaration specifies that a ParameterError
occurs if f is called with an argument less than zero, and that
if the return value is -1, an Aborted alert was raised:

fun f(x : int) : int
pre x < 0 alert ParameterError
post value == -1 alert Aborted

A handler declaration specifies what action is to be taken if
a given alert is raised in a function matched by its call
pattern (the syntax is shown in Figure 2). The call pattern
can be either * (all functions) or a list of named functions,
possibly with parameter lists. This corresponds to the pointcut
concept in AspectJ [3, 19]. The handler itself is a statement;
it can reference the actual arguments of the call (if a formal
parameter list is provided in the handler declaration), names
from the scope to which it applies, and value—the return
value of the function for which the handler was called. For
example, this handler declaration specifies that the program
should abort with an error message in case of a fatal error:

on FatalError in * begin
print("Fatal Error!");
exit(1);

end
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Handlers. A handler associates a statement with an alert condi-
tion; the statement is executed if the alert occurs. The use statement
substitutes a value for the return value of the alerting function.
"on" Id "in" {CallPattern ","} Stat -> Stat
"use" Exp ";" -> Stat

Call patterns. A * matches a call to any function. The second
form matches a call to a named function; the third form makes the
actual arguments of the call available to the handler.

"*" -> CallPattern
Id -> CallPattern
Id "(" {Id ","}* ")" -> CallPattern

Figure 2. Grammar for handler declarations. The notation {X
Y}*means X repeated zero or more times, separated by Ys.

The use statement is used to “return” a value from the
handler; this value will be given to the original caller as if
it was returned directly from the function called:

on Failed in lookup(k) begin
log("lookup failed: ", k);
use "Unknown";

end

The on-declaration is a statement, and applies to all calls
matching the call pattern within the same lexical scope. If
more than one handler may apply for a given alert, the most
specific one closest in scoping applies.

TIL+Alert does not add anything that can not be expressed
in TIL itself, at the cost of less notational convenience. For
example, given the above alert and handler declarations, a
call

print(lookup("foo"));

would need to implemented somewhat like

var t : string;
t = lookup("foo");
if t == "" then t = "Unknown"; end
print(t);

This cumbersome pattern should be familiar to many pro-
grammers (programming with Unix system calls, for in-
stance, or with C in general): save the result in a temporary
variable, test it, handle any error, resume normal operations
if no error was detected or if the error was handled. Excep-
tions alleviate the need to check for errors on every return,
but writing try/catch blocks everywhere a handler is needed
is still cumbersome, and changing handling policies for large
portions of code is tedious and error-prone.

3. Implementation of TIL+Alert
We have several possibilities when faced with the task of
implementing a DSAL, or a language extension in general:

1. Compile to object code—write an entirely new compiler
for the extended language.

2. Compile to unextended language—write an aspect-
weaving preprocessor for an existing compiler.

3. Compile to aspect language—write a preprocessor for an
existing aspect weaver.

The first choice is typically the most costly, and therefore
also the least attractive. The second option is a common
technique for bootstrapping new languages, and was used

for both C++ and AspectJ. The third option is only possible
if the subject language we are extending already supports
a form of aspects which can be suitably used for writing
implementing (most of) the semantics of our DSAL. We will
discuss this option in more detail in Section 4.

DSALs are almost by definition extensions of existing
languages, and we can therefore expect to have at least
some language infrastructure. In other words, we need only
consider the latter two situations above. In our experience,
implementing the aspect extension as library + notation in a
program transformation system is a very efficient approach
in terms of development time.

3.1 DSAL = library + notation

We have said that (alert handling) aspects are meta-programs,
then showed the programmer notation for these in Section 2.2
where we discussed the alert grammar. This covers the
“notation” half of our equation. Now we will discuss how
the semantics are implemented as a transformation library
written in a program transformation system.

Stratego/XT [11] is our implementation vehicle of choice.
Stratego is a domain-specific language for program transfor-
mation based on the paradigm of strategic programming [21]
and provides many convenient language abstractions for our
problem domain. The language is bundled with XT, a set
of reusable transformation components and generators—in
particular a formalism for defining language syntax, called
SDF [26]—that support the development of language pro-
cessing tools. In Section 4 we will discuss some of the benefits
and drawbacks of using program transformation systems for
implementing aspect weavers.

An existing language infrastructure for TIL exists that pro-
vides a grammar, a rudimentary compiler that does type
checking and optimization, and finally a runtime that exe-
cutes the compiled result. Together, these components make
out a general-purpose transformation library for TIL. Using it,
we can implement any program analysis and transformations
on TIL programs [10]. The Alert grammar is implemented as
a separate grammar module of about 30 lines of SDF code.
Compositing this with the basic TIL grammar results in the
complete syntax for the TIL+Alert language, c.f. the first step
in Figure 3. We then use the TIL transformation library to
implement a new Alert transformation library. Based on this,
we can run meta-programs which perform the semantics of
the alert constructs, i.e. the on and pre/post declarations: At
compile-time, an abstract syntax tree for TIL+Alert is con-
structed and the corresponding meta-program for each alert
construct is executed. Once all alert constructs in the pro-
gram have been handled, the base program will have been
rewritten. This completes the aspect weaving.

Ideologically, our approach can be considered an exam-
ple of the “transformations for abstractions”-philosophy de-
scribed by Visser [27] – we are effectively extending the open
TIL infrastructure with transformations (our meta-programs)
that provide new abstractions (the alerts). Next, we will de-
scribe the principles behind the implementation of the alert
extension, and pay particular attention to the weaving done
by the meta programs.

3.2 Type Checking

The constructs of the Alert language (pre, post, on and use)
require their own type checking. To do this, we exploit the
construction of the basic TIL type checker. It is a rule set.
By adding new type checking rules to this set, we can easily
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Figure 3. Implementation schematics. The Alert weave step
implements the interpreter for the Alert meta-language and
transforms a TIL+Alert program into a valid TIL program.

extend its domain (i.e. the ASTs it can process), as we do here
for use. The following is a Stratego rewrite rule:

TypecheckUse: Use(e) -> Use(e’){t}
where <typecheck-exp ; typeof> e => t

This rule, named TypecheckUse, says that if we are at a Use
node in the AST with one subnode called e (this happens
to be an expression), then we reuse the typecheck-exp
function from the TIL library and annotate the Use node
with the computed type t. The ; operator works as function
composition. The cases for pre and post are very similar.
For type checking purposes, we define an on declaration to
be a statement, thus having the void type. These few rules
implement the “Alert typecheck” box in Figure 3.

3.3 Alert Weaving

The compilation flow in Figure 3 shows that after type check-
ing, the DSAL meta-program parts of a TIL+Alert program
are executed, effectuating the weaving. Once weaved, the
Alert constructs are gone and the rest of the pipeline will
process a pure TIL program. This program is optimised and
compiled using unmodified steps of the TIL compiler.

The DSAL notation can be expanded using the simple
translation scheme for we DSLs, described in the introduc-
tion, i.e. basic macro expansion, but with one crucial differ-
ence: whereas the DSL notation is expanded to library calls
of a subject language library, the DSAL notation is expanded
to library calls of a transformation language library, and the
transformation language is generally different from the sub-
ject language. Here, TIL is our subject language and Stratego
is our transformation language. Essentially, the DSAL nota-
tion is a syntactic abstraction over the Alert transformation
library. This notation is embedded in the subject language
(TIL), providing a distilled form of meta-programming in-
side TIL for managing the error handling concern.

When weaving Alert, we have to consider three constructs:
the modified function definitions which now have pre/post
conditions, the on handler declarations, and function calls.
The code for the following cases are all part of the Alert
transformation library where they are are implemented as
Stratego rewrite rules. When the DSAL notation is expanded,
it results in calls to these rules.

Pre/Post Conditions on Function Definitions Pre/post con-
ditions are easy to process. They are merely markers, or an-
notations, on the functions. The expression of a pre/post con-

dition can only be activated by an on-handler, so the meta-
program processing the pre/post conditions has two tasks:
first, to store the alert declaration for later use, and second,
to remove it from the AST so that we may eventually reach a
pure TIL AST. The following rewrite rule, WeaveFunDef, does
this:

WeaveFunDef:
FunDef(x@FunDeclAlert(fd@FunDecl(n, _, _), _), body) ->
FunDef(fd, body)

where rules( Functions: n -> x )

It takes a function definition (a FunDef node) that has a
subnode which is a pre/post condition (a FunDeclAlert) and
rewrites the FunDef node to a pure TIL FunDef by removing
the FunDeclAlert node. Further, WeaveFunDef creates a new,
dynamic rule called Functions that records a mapping from
the name of this function to its complete pre/post alert
declaration. A dynamic rule works exactly like a rewrite
rule, but can be introduced at runtime, much like closures
in functional programming languages. This is done with the
rules construct. After WeaveFunDef has finished, the pre/post
condition is removed, and the Functions rule can now be
used as a mapping function from the name of a TIL+Alert
function to its declaration.

In the code above, _ is the wildcard pattern (matches
anything) and v@p(x) means bind the variable v to the AST
matched by the pattern p(x).

On The processing of on itself is also easy. Its node is
removed from the AST and we add it to the current set
of active on-handlers, maintained in the dynamic rule On.
On maps from the name of an alert to the call patterns and
handler for it.

WeaveOn: On(n, patterns, handler) -> None
where rules(On : n -> (patterns, handler))

Function Calls Rewriting function calls to adhere to the
new semantics is the crux of the Alert DSAL, and is done
by WeaveFunCall. This rule implements the following trans-
lation scheme. Consider the pattern for functions f in the
following form, where f is the function name, fi are the vari-
able names, ti are the corresponding types, tr is the return
type, and the precondition is as explained earlier:

fun f(f0 : t0, ...) : tr
pre exp alert signal

begin ... end

Whenever we see the declaration of an on handler, we need to
process the subsequent calls in the same (static) scope, since
these may now need to be transformed. We are looking for
patterns on the form:

on signal in pattern handler;
...
z := f(e0, ...);

When we encounter an instance of this pattern, we may need
to replace the call to f by some extra logic that performs the
precondition check and, if necessary, executes the relevant
on-handler according to the following call template2.

z := begin

2 The begin/end block here is called an expression block. It is
effectively a closure that must always end in a return. It will
be removed by a later translation step that lifts out the variables
contained within it, finally giving a valid TIL program.
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var r : tr;
var a_0 : t_0 := e_0; ...
if exp then handler
else r := f(a_0, ...) end
return r;

end

WeaveFunCallwill perform the aspect weaving. We will now
describe the principles behind it, but not present the full
source code, as this is available in the downloadable source
code for TIL+Alert (see Section 5).

The weaving of WeaveFunCall can only happen at FunCall
nodes, i.e. nodes in the TIL+Alert AST that are function
calls. Assume WeaveFunCall is applied to a function call of
the function f . First, it will check that f signals alerts by
consulting the Function dynamic rule that was produced by
WeaveFunDef. If indeed f has a declared alert, then the set
of active on handlers for the current (static) scope is checked
by consulting the On dynamic rule that was initialized by
WeaveOn. Multiple on handlers can be active, so another Alert
library function is used to resolve which takes precedence
(the closest, most specific). Once the appropriate handler is
found, the function call to f is rewritten according to the call
template shown above, i.e. the FunCall node is replaced by
an expression block (an EBlock) which does the precondition
check before the call.

Extra care must be taken in the handling of variable
names during this rewrite. The precondition expression is
formulated in terms of the formal variable names of f , so we
cannot insert that subtree unchanged. We must remap the
variables, and this is done by a function called remap-vars.
As the call template shows, for each formal parameter fi of
f , we create a local variable ai that is assigned the actual
value from the call site. We rename the variables in the
precondition expression of f , from fi to ai, and insert the
rewritten expression as exp in the call template.

3.4 Coordination

The meta-programs induced by the on, pre and post decla-
rations are dispatched by a high-level strategy that can be
likened to an interpreter for the Alert aspect extension. This
strategy is implemented as a traversal over the TIL+Alert
AST. It contains the logic responsible for translating the Alert
notation into calls to the Alert transformation library, and in
that capacity, it corresponds to the DSL macro expander. Its
execution will coordinate the meta-programs for the various
alert constructs. Once the traversal completes, all the Alert-
specific nodes will have been excised from the tree, and the
result is a woven TIL AST that can be optimized and run.

4. Discussion
While DSLs can often be implemented as rather simple macro
expanders, the same translation scheme is apparently not ap-
plicable for DSALs. The cross-cutting nature of DSALs means
that statements or declarations in a DSAL usually have non-
local effects. A single line in the DSAL may bring about
changes to every other line in the program, and this is not
possible to achieve using macro expanders. However, the
translation scheme offered by the macro expansion technique
is appealing both because of its simplicity and its familiar-
ity; we already have ample experience and tools which may
be brought to bear if we could reformulate the DSAL im-
plementation problem to be a DSL implementation problem.
This is what our technique offers, by using a program trans-
formation system to implement the library (semantics) for the

DSAL notation (syntax). Here, we perform a brief evaluation
of our approach.

4.1 Program Transformation

Program transformation languages are domain-specific lan-
guages for manipulating program trees. Stratego and other
transformation language such as TXL [15] and ASF [25] all
have abstract syntax trees as built-in data types, rewrite rules
with structural pattern matching to perform tree modifica-
tion, concrete syntax support and libraries with generic trans-
formation functions. The advantage to using such languages
for program transformation is that the transformation pro-
grams generally become smaller and more declarative when
compared to implementations in general-purpose languages,
be they imperative, object-oriented or functional.

High-level Transformations In our experience, when do-
ing experiments with aspect language and aspect weaving,
working with on high-level program representation such as
the AST is often preferable to lower-level representions tra-
ditionally found in compiler-backends. The AST provides all
the information from the original source code and is together
with a symbol table a convient and familar data structure
to work with. When working with ASTs, it is important for
the transformation language to have good support for both
reading and manipulating trees and tree-like data structures.

Generic Tree Traversals Many program transformation lan-
guages and functional languages, especially members of the
ML family, have linguistic support for pattern matching on
trees. We have already seen pattern matching in Stratego in
the rewrite rules in Section 3. Using recursive functions and
pattern matching, tree traversals are relatively simple to ex-
press, e.g.:

fun visit(Or(e, e)) = ..
| visit(And(e, e)) = ..

In object-oriented (OO) languages, the Visitor pattern is a
common idiom for tree traversal, but compared to pattern
matching with recursion, it is very verbose. Both techniques
perform poorly when the AST changes, however. Introducing
a new AST node type requires changes to all recursive visitor
functions, or in the OO case to the interface of the Visitor
(and thus all classes implementing it). There is, however, an
aspect-oriented solution to the cross-cutting-concern part of
this problem [22].

Generic programming [20] in functional languages and
generic traversals, as offered in Stratego, provide a solution.
Generic traversals also allow arbitrary composition of traver-
sal strategies.

bottomup(s) = all(bottomup(s)); s

This defines bottomup (post-order traversal) of a transforma-
tion s as “first, apply bottomup(s) recursively to all children
of the current node, then apply the transformation s to the
result”. Once defined, this function can be used to succinctly
program the variable renaming needed by the WeaveFunDef
in Section 3.3:

remap-vars(|varmap) =
bottomup(try(\ Var(n) -> Var(<lookup> (n, varmap)) \))

Syntax Analysis Support Program transformation lan-
guages typically come with parsing toolkits and libraries for
manipulating existing languages, reducing the effort needed
to create a language infrastructure. Also, there is often a tight

transdsal rev. exported 5 2006/10/8



integration between the parser and the transformation lan-
guage in transformation systems. Among other things, this
allows expressing manipulations of code fragments from the
subject language very precisely, using concrete syntax.

Rewriting with Concrete Syntax Another important task is
tree manipulation. Rewrite rules provide a concise syntax
and semantics for tree rewriting, but rewriting on ASTs
can of course be expressed in any language. In program
transformation languages, rewriting with concrete syntax, i.e.
using code fragments written in the subject language is often
provided, and this may improve the readability of rewrite
rules considerably, e.g.:

Optimize: |[ if 0 then ~e0 else ~e1 end ]| -> |[ ~e1 ]|

Here, ˜e0 and ˜e1 are a meta-variables, i.e. variables in
the transformation language (Stratego) and not the subject
language (TIL).

Generic Transformation Libraries Libraries for language
processing are not unique to program transformation sys-
tems, but transformation libraries often contain quite exten-
sive collections of tree traversal and rule set evaluation strate-
gies not found elsewhere. Also, some transformation systems
provide generic, reusable functionality for data- and control-
flow analysis, as well as basic support for variable renaming
and type analysis. However, the libraries of transformation
systems are often less complete than that of general purpose
languages, when it comes to typical abstract data types.

Maturity and Learning Curve A clear disadvantage of con-
temporary program transformation systems is their relative
immaturity when compared to implementations of main-
stream, general-purpose languages. The compilers are usu-
ally slower, the development environments are not as ad-
vanced, and fewer options for debugging and profiling exist.
Further, the same domain abstractions that make domain-
specific transformation languages effective to use, also make
them more difficult to learn, a tradeoff that must be evaluated
when considering the use of a transformation language.

4.2 Program Transformation Languages for Aspect
Implementation

The stance we take in this paper is that a aspect languages
are a form of domain-specific transformation language; they
provide convenient abstractions (join points, pointcuts, ad-
vice) for performing certain kinds of transformations (as-
pect weaving—dealing with cross-cutting concerns). They
hide the full complexity of program transformation from pro-
grammers. Domain-specific aspect languages are even more
domain-specific, and hide the complexities of general aspects
from their users.

As domain-specific transformation languages, DSALs are
conveniently implemented as libraries in a program transfor-
mation language. We make this claim based on our experience
with the DSAL = library+notation method from constructing
the following systems:

• A domain-specific error-handling aspect language [6]—
a simplified version of this is used as an example in
this paper. Our current implementation is for C, and
is implemented in the Stratego program transformation
language [11] using the C Transformers framework [9].
• A component and aspect language for adaptation and

reuse of Java classes. An early version of this is described
in [5]; it is implemented by translation to AspectJ [3, 19],
using Stratego.

• AspectStratego [18]—an aspect-language extension to the
Stratego program transformation language; implemented
in Stratego itself, by compilation to primitive Stratego
code.
• CodeBoost [7]—a transformation system for C++ that pro-

vides user-defined rules; an aspect language that allows
users to declare library-specific optimization patterns in-
side the C++ code. The patterns are simple rewrite rules,
executed at compile-time. User-defined rules is imple-
mented with the library+notation technique, with the li-
brary written in Stratego.

Part of the design goals for many of these experiments was
harnessing the expressive power of general program trans-
formation systems into “domain-specific transformation lan-
guages” that the programmers of the subject languages could
benefit from. In a word, these domain-specific transformation
languages are DSALs. For most of our systems, the transfor-
mations underlying these extensions, i.e. the implementation
of the DSAL semantics, are reusable Stratego libraries, and
form the basis for further extensions and experiments.

Experiences One lesson learned from the construction of
these DSALs is that good infrastructure for syntax extensions
of the subject language is important. Reusing frontends from
existing compilers usually preclude extending the syntax, as
that would require massive changes to the frontend itself
(and for mainstream languages, this is a substantial task).
Implementing robust grammars for complicated languages
like C++ and Java is infeasible, so language infrastructures
provided by program transformation systems were of great
help to us. Another lesson is that familiarity with language
construction is crucial. Extending a subject language with
an arbitrary DSAL may be very complicated, depending on
what the DSAL is supposed to achieve. It may therefore be
premature to expect regular developers to be able to design
their own DSAL language extensions. This is often in more
due to the complex semantics of the subject language itself,
than the complexity of the DSAL.

4.3 Related Work

JTS, the Jakarta Tool Suite [8] is a toolkit for developing
domain-specific languages. It consists of Jak, a DSL-extension
to Java for implementing program transformation, and Bali,
a tool for composing grammars. Jak allows syntax trees and
tree fragments to be written in concrete syntax within a Java
program, and provides abstractions for traversal and modifi-
cation of syntax trees. Bali generates grammar specifications
for a lexer and parser and class hierarchies for tree nodes,
with constructor, editing and unparsing methods. Bali sup-
ports composition of grammars from multiple DSLs. DSL
development with JTS is much like what we have described
here; an existing language is extended with domain-specific
syntax (in Bali), and a small tool is written (in Jak), translating
the DSL to the base language.

XAspects [24] is a system for developing DSALs. It pro-
vides a plug-in architecture supporting the use of multiple
DSALs within the same program. Declarations belonging to
each DSAL are marked syntactically, picked up by the XAs-
pects compiler and delivered to the plug-ins. The plug-ins
then perform any necessary modification to the visible pro-
gram interface (declared classes and methods). Bytecode is
then generated by the AspectJ compiler; the plug-ins then
have an opportunity to perform cross-cutting analysis and
generating AspectJ code which is woven by the AspectJ com-
piler. Thus, implementation of a new DSAL is reduced to cre-
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ating a plug-in which performs the necessary analyses and
generates AspectJ code. Our method, with program transfor-
mation, can either complement XAspects, as a way of im-
plementing XAspects plug-ins, or replace it, by developing
a libraries for AspectJ manipulation in a program transfor-
mation language. The plug-in architecture of XAspects is ap-
pealing, as it forces possibly conflicting DSALs to conform to
a common framework, making composition of DSALs easier.
Both XAspects and our implementation can be seen as li-
brary+notation approaches. However, since domain-specific
aspects in XAspects can only modify existing code using As-
pectJ advice and intertype declarations, there are limits to the
invasiveness of the DSAL expressed with XAspects. Our im-
plementation strategy has no such constraint since Stratego
supports any kind of code modification.

The AspectBench Compiler [2] provides another open-
ended aspect compiler, but is more focused on general aspect
languages. It implements the AspectJ language, but is also
intended as research platform for experimenting with aspect
language extensions generally.

Logic meta programming (LMP) is proposed as a frame-
work for implementing DSALs in [13], because expressing
cross-cutting concerns using logic languages is appealing. We
believe that our approach could be instantiated with an LMP
system as well: the DSAL notation may be desugared into
small logic meta-programs which perform the actual weav-
ing. Depending on the logic language, constructing and com-
positing logic-based transformation libraries may be possible.

In [14], the authors argue that AOP is a general discipline
that should be confine itself in a domain-specific language,
but rather be addressed with a general, open framework for
composing all kinds of aspects. Such an infrastructure, should
it be constructed, would be an interesting compilation target
to expand DSAL notation to.

Gray and Roychoudhury [17] describe the implementation
of a general aspect language for Object Pascal using the DMS
program transformation system. They conclude that since
transformation systems often provide good and reusable lan-
guage infrastructure for various subject languages, they are
good starting points when developing new aspect extensions.
We are of the same opinion, and advocate a disciplined ap-
proach where the aspect extensions themselves are imple-
mented as reusable transformation libraries that may in turn
be used a substrate for later extensions.

Assman and Ludwig [4] describe the implementation of
aspect weaving using graph rewrite systems. The authors
express the weaving steps in terms of graph rewrite rules,
similar to how we describe them as tree rewrite rules. In
principle, transformation libraries could be constructed from
the sets of graph rewriting rules, but the rule set appears
to always be evaluated exhaustively. This makes rule set
composition (i.e. library extension) problematic, since two
rule sets that are known to terminate may no longer terminate
when composed. In Stratego, there is no fixed normalization
strategy; the transformation programmer may select one from
the library or compose one herself, which in practice adds a
very useful degree of flexibility.

5. Conclusion
In this paper, we have discussed the library+notation method
for implementing DSLs: building a library that implements
the semantics of the domain, a syntax definition for the de-
sired notation, and a simple translator that expands the no-
tation into library calls. We showed how this method can
also be used effectively for implementing DSALs by writ-

ing the library part in a program transformation system,
expressing the notation as a syntax extension to a subject
language, and translating the notation of the DSAL into li-
brary calls in the transformation system. This makes the
DSAL a meta-program that is executed at compile-time, and
that will rewrite the subject program according to the im-
plemented DSAL semantics. Our illustrating examples were
based around a small imperative language with an aspect
extension for separately declaring error handling policies.

We argued that, based on our experience, program trans-
formation systems are ideal vehicles for implementing such
libraries because they themselves come with domain-specific
languages and tools for doing language processing, which
greatly reduces the burden of implementation when com-
pared to general purpose languages.

The complete implementation of TIL+Alert is available at
www.codeboost.org/alert/til.
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A. TIL Grammar
Programs. A program is a list of function definitions, fol-
lowed by a main program (a list of statements).

FunDef* Stat* -> Program

Functions. A function definition defines is function with a
given signature (FunDecl) and body (a list of statements).

"fun" Id "(" {Param ","}* ")" ":" Type -> FunDecl
FunDecl "begin" Stat* "end" -> FunDef
Id ":" Type -> Param

Statements:

"var" Id ";" -> Stat
"var" Id ":" Type ";" -> Stat
Id ":=" Exp ";" -> Stat
"begin" Stat* "end" -> Stat
"if" Exp "then" Stat* "end" -> Stat
"if" Exp "then" Stat* "else" Stat* "end" -> Stat
"while" Exp "do" Stat* "end" -> Stat
"for" Id ":=" Exp "to" Exp "do" Stat* "end" -> Stat
Id "(" {Exp ","}* ")" ";" -> Stat
"return" Exp ";" -> Stat

Expressions:

"true" | "false" -> Exp
Id -> Exp
Int -> Exp
String -> Exp
Exp Op Exp -> Exp
"(" Exp ")" -> Exp
Id "(" {Exp ","}* ")" -> Exp

Lexical syntax:

[A-Za-z][A-Za-z0-9]* -> Id
[0-9]+ -> Int
"\"" StrChar* "\"" -> String
~[\"\\\n] | [\\][\"\\n] -> StrChar
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