

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DSAL’08 April 1st, 2008, Brussels, Belgium.
Copyright © 2008 ACM 1-59593-XXX-X/0X/000X…$5.00.

Dynamically Linked Domain-Specific Extensions
for Advice Languages

Tom Dinkelaker Mira Mezini
Darmstadt University of Technology

Hochschulstr. 10, 64289 Darmstadt, Germany
{dinkelaker,mezini}@informatik.tu-darmstadt.de

Abstract
Domain-specific aspect languages allow defining aspects for a
certain problem domain faster and easier by providing specialized
expressivity and by reducing the complexity of the language inter-
face. However, providing domain-specific aspect languages is a
rather complex task. With current approaches only specialists can
build new domain specific aspect languages; in doing so they have
to replicate large parts of the tool set. In this paper, we have ex-
tended a general-purpose aspect language to support embedded
domain-specific syntax in the advice language. The approach has
several advantages. First, it allows reusing a large part of existing
tools and infrastructure. Second domain-specific extensions can
be defined in separated modules, which can be dynamically linked
into the advice language; these modules can be inherited from,
they can be refined from existing implementations, and can be
composed to support abstractions from different domains.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques

Keywords Domain-specific Aspect Languages, Embedded Do-
main-specific Languages.

1. Introduction
The aspect-oriented language community has addressed special
problem domains using domain-specific aspect languages (DSAL)
from the beginning [17]. The idea is to provide special domain
abstractions in an AO language in order to simplify the implemen-
tation of aspects[1][2]. Current research on DSAL focuses on
providing new DSALs implemented from scratch or by using
specialized compilers [13], program transformation [18], and des-
ignated execution environments [15] that weave in aspects defined
in a DSAL. Current DSALs provide good support for particular
domains, such as remote invocation, error handling [18], and ad-
vanced transactions [14]. Frameworks have been proposed that
allow introducing new keywords [13] and that allow defining
templates for aspect definitions [16].

A problem with most existing DSAL approaches is that they
do not facilitate the refinement and composition of the domain-
specific extensions. As a consequence, significant parts of the
implementation efforts have to be duplicated when creating new
DSALs and large parts of the companying tools have to be repli-
cated for each DSAL. Today’s approaches can only be used by
developers that are experts in building parsers, compilers, or ex-
ecution environments. This strongly restricts their applicability for

ordinary DSAL users that are only familiar with the principles of
AOP.
An alternative approach to support domain-specific abstractions
are embedded domain-specific languages (EDSLs) [8][9][10],
which is a well-known technique in several languages. In this
paper we show that EDSLs can also be used to rapidly prototype
domain-specific extensions (DSX) for aspect languages. However,
the approach cannot be used with popular AOP tools, as the latter
do not support embedding DSLs.

To address this problem, our ongoing research is focused on
answering the following questions: Can we provide a generic
approach to provide new and extensible implementations of do-
main-specific aspect languages using the embedded languages
approach? And, can we provide a language framework that can
directly be used by language designer to tailor a domain-specific
aspect language for the user’s domain? The above questions have
to be answered twice for domain-specific aspect languages - once
for pointcut language and once for the advice language. In this
paper the focus is on embedding DSXs in advice languages.

The basic idea is to extend aspect languages with support for
embedding DSL. We have built an extension to AspectJ [1] that
allows implementing advice in the Groovy scripting language [1].
Groovy has been chosen because of its very good support for em-
bedding DSLs. Our approach allows AOP developers to design
new domain-specific languages for user’s needs and for special
domains that have not been considered so far. Thereby, AOP de-
velopers are guided by a well-defined recipe for writing a DSX.
The approach has several advantages. First, a DSX can concisely
be defined in only one class. Second, the approach allows devel-
oper to extend and refine existing DSX implementations, and it
supports ad-hoc composition of DSXs.

The reminder of the paper is structured as follows. Sec. 2 gives
a short introduction to Groovy. Sec. 3 elaborates on a pattern for
implementing EDSL and shows how to implement an EDSL in
Groovy. Sec. 4 presents our approach for building DSXs and Sec.
5 shows several applications of our prototype. Sec. 6 gives im-
plementation details. Sec. 7 concludes the paper.

2. Introduction to Groovy
Groovy [1] is a dynamic scripting language based on Java tech-
nology. At runtime, right before execution, Groovy code is com-
piled to Java bytecode that is interpreted by a Java VM. Groovy
provides a sophisticated set of language features. However, it is
out of the scope of this paper to give a full introduction to Groovy.
Therefore, we refer to [1] and discuss only the features relevant
for this work. Groovy has a Java-like syntax, but in contrast it is a
pure object-oriented language, i.e., everything is an object. Primi-
tives are auto-boxed and the language supports both duck typing
and strong typing. Groovy has special built-in language support
for selected types. Groovy provides so-called GStrings in which
one can directly access variables such that println “Value
of x is $x” will print out the value of x inside the string.

2

One can statically construct Lists and Arrays listing their elements
[elem1,…, elemN], HashMaps using [key1:val1,…,
keyN:valN], and regular expression can be defined using the
following syntax: /<RegEx>/.

Further, Groovy supports overloading certain operators for ar-
bitrary classes. Operators are automatically mapped to method
calls, e.g., the usage of the “+” operator in a+b is automatically
mapped to the call a.plus(b). Thus, one can overload the “+”
operator by overwriting the plus() method. Another special
type is closure. A Groovy closure is a first-class entity that can be
used to defer the evaluation of a piece of code. A closure block is
defined using curly brackets. E.g., Closure cl = {x ->
x*x}, defines a closure that takes the (untyped) parameter x and
returns its square value. Closure instances like cl can be refe-
renced and passed to methods as parameters. Later, the closure cl
can be evaluated by invoking cl.call(5), which will return
25. By default, Groovy closures do not come with designate envi-
ronment. Nonetheless, we can bind a context to a Groovy closure
by setting a delegate object. E.g., for {y+z}.delegate =
[y:1,z:2], the delegate HashMap will receive all property
accesses (and method calls): it uses the property name as the key
and returns the associated value.

The collection types define certain methods that take a closure
as an argument and apply it to each element in order to iterate
over contained elements, e.g., list.each {e -> print
"$e "} prints all elements of the list. Groovy defines a meta-
object protocol (MOP), which can be used for pretended method
calls (and pretended properties), which means that code may
invoke a method on an object that is not defined in its class. As
method calls are first handled by the MOP, they can be forwarded
to other methods or objects. Groovy defines a number of rules
about the meaning of pretended calls for certain classes.

3. Embedded Domain-Specific Languages
Object-oriented scripting languages can be used to implement
DSLs using a special implementation technique that embeds the
domain-specific language into another language. A DSL imple-
mented using this approach is called an embedded domain-specific
language (EDSL) [8]. By reusing the features of the host lan-
guage in which the EDSL is embedded, the EDSL implementation
approach promises to faster provide a powerful language than
following the traditional approach. The traditional approach re-
quires the developer to provide parsers, compilers, and develop-
ment tools; in contrast, new EDSLs can partially reuse the parsers,
compilers and development tools of their host languages.

Implementing EDSL is a well-known technique in dynamic lan-
guages, such as Ruby [10][12] or Groovy [1]. For example,
Groovy strongly utilized a family of DSLs in the Grails Web
framework [1]. In these scripting languages, one can write do-
main-specific code in the host language syntax. Domain-specific
literals and operators that are not defined in the host language are
dynamically mapped to property accesses and method calls on an
interpreter instance, which is at the heart of the EDSL implemen-
tation. This exploits the fact that code is evaluated right before
executing it. One can write code that uses a domain operation not
defined for the host language. Note that, there is no compiler that
rejects the usage of such an operation because it is not yet defined.
Instead, the operation is interpreted as a method call to an unde-
fined method. The MOP particularly intercepts calls to missing
methods. This gives the opportunity to redirect property accesses
and operator calls to the interpreter instance that understands the
domain operations and evaluates these operations according to
domain semantics.

3.1 A Pattern for Building EDSLs
The design and implementation of EDSLs strongly depends on the
host language, thus one needs a good development description at
the finger tips. There are numberless informal sources that use
EDSLs in object-oriented scripting languages [10][1][12], but to
the best of our knowledge no EDSL pattern description is availa-
ble that describes the implementation tasks in scripting languages
from grammar to code. Thus, we describe the development tasks
for the “EDSL pattern” as a set of instructions one can follow.
This pattern applies to any host language that provides the follow-
ing features: (1) object-oriented constructs that allow a modula-
rized implementation of the domain logic, (2) code blocks or
closures as first-class values to support nested structures in DSL
code, (3) a meta-object protocol that allows intercepting pre-
tended property accesses and method calls and that can be used to
delegate method calls, and (4) a flexible and non-intrusive syntax
that allows using undefined methods in code and that allows omit-
ting unnecessary details for better designing the concrete syntax
of the DSL. These requirements are met by Groovy but also by
other object-oriented scripting languages such as Ruby.

The instructions for implementing an EDSL start directly from the
DSL syntax, which is given in BNF form or as a list of keywords.
In the recipe for the EDSL pattern, one follows the subsequent list
of steps:
1. For each object type in the domain create a domain class Tk

• Consider reusing an existing type from the host lan-
guage or from a library.

• Create attributes that describe the domain object.
• Create getters and setters to access the attributes
• Create a method for each operation on this type,
• All domain classes form a domain meta-model.

2. Create an interpreter class E (for each EDSL/DSX).
• The class implements a special interface with two me-

thods: getInterpreter() and eval(). The me-
thod getInterpreter() instantiates a new DSL
interpreter. The method eval() takes a closure as a
parameter and returns an Object. The closure contains
DSL statements that are evaluated and the resulting val-
ue is returned.

• The interpreter class defines several domain literals and
domain operations.

• The interpreter extensively uses domain types from the
domain meta-model to implement the semantics of the
domain,

• The interpreter may hold state, e.g., use a HashMap to
simulate a heap of domain objects.

3. Add a property to E for each domain literal of the BNF. This
forms a new literal keyword in the DSL.
• The property is named after the keyword identifier used

in the BNF.
• The property has a type Ti.

4. Add a method to E for each domain operation of the BNF.
This forms a new operation keyword in the DSL.
• The method is named after the keyword identifier used

in the BNF.
• For an N-ary operator, the method takes N parameters.
• The method returns a type Tj.

5. Add a method to E for each nested structure of the BNF.
• A nested structure in the BNF is also defined in form of

a method that takes a closure as the last parameter. This
method is responsible to handle the code contained in
the closure, e.g., it evaluates the closure immediately.

3

The above steps can be adopted in case of special needs, however,
the process may never violate a syntax rule of the host language,
e.g., use a host language keyword as an identifier in the new DSL.
In such cases, the concrete syntax of the DSL must be modified.

3.2 Implementing embedded DSLs in Groovy
In the following, we elaborate on how the instructions can be
followed in Groovy. We exemplify the pattern by implementing a
simple DSL for trivalent logic, which besides true and false has a
third state unknown. Fig. 1 shows the different artifacts that are
used to implement this EDSL. The syntax of the EDSL (index 1 in
Fig. 1) is compatible with Groovy syntax.

In Fig. 1, at index 3, the domain meta-model for the trivalent
DSL is given. A domain meta-model defines the domain types and
an interpreter class. Domain types define the semantics of domain
objects. They are modeled as ordinary classes in the host lan-
guage. In this example, to follow step 1 of the recipe, we define an
abstract class that represents the trivalent states. The methods of
this abstract class Trivalent are implemented by each of the
derivates True, False, and Unknown. The derivates encapsu-
late the logic for operations on types.

The TrivalentDSL interpreter, whose implementation is
shown in Fig. 2, is used to evaluate DSL code and to handle do-
main objects. The class provides a method getInterpre-
ter() (Fig. 2, line 3) to create a new instance for interpreting
DSL code. With such an interpreter instance, the eval() method
(line 8) is used to execute DSL code, which is passed to eval()
as a Closure. The interpreter sets itself to be the delegate of the
closure (lines 9-10)1. This way, the interpreter instance receives
all operations during the execution of the DSL code (starting at
line 11). Lines 15 to 17 define the domain literals of the trivalent
DSL. Next, in lines 20-22 the not() domain operator is defined
that simply forwards to the corresponding domain types. In lines
24-27, the domain operation puts()is defined. We do not have

1 Recall: A delegate is an object that receives all property accesses and
method calls the closure does not understand.

to implement the operators “&” and “|”. Groovy automatically
maps them to calls to and(), respectively or(), on the objects
to which the operators are applied, thus they are directly mapped
to the methods of the domain types. Therefore, the domain opera-
tions on types can be defined in the meta-model.

In the following, we use the small program given at index 2 of
Fig. 1 to illustrate the dynamics of executing code written in the
trivalent logic DSL. The objects of the domain meta-model
classes that are instantiated when the DSL program at index 2 is
executed are shown at index 4.

In the DSL program at index 2 line 1, an instance of the DSL
interpreter class is retrieved. In the next line, we call eval() on
the interpreter instance to evaluate the following DSL code block
(lines 3-12). The trivalent DSL has three domain literals: T refer-
ences an instance of True from the meta-model, F references
False, and U references the state Unknown. The reader familiar
with Groovy will notice that we reuse Groovy syntax and lan-
guage features in DSL code. In line 5, an untyped variable x is
defined and the trivalent U is assigned to x. Using Groovy va-
riables in DSL code is possible, because domain types are mod-
eled as ordinary Groovy classes. Further, we make usage of the
fact that the operators “&” and “|” are mapped to and() and
or() in Groovy. Operators return a reference to a domain object,
hence we can continue working with result values in DSLs. In
addition to this, the trivalent DSL defines two domain operations:
the binary operator puts,which prints out a String (this type is
reused from the host language) followed by a Trivalent. Also,
the DSL defines the unary operator not() that takes a trivalent
and returns its complement. We do not go into the details for lines
3 to 9, as more interesting are lines 10 to 12 where x is unknown.
The semantics of unknown is that whenever the result of an opera-
tion depends on the unknown value, the result will be unknown.
For this reason, the result of line 10 is U. In contrast, in case of
line 11, the result does not depend on x because the other value is
T, therefore “|”, resp. or(), will return T. Again, in line 12 the
complement depends on unknown, hence must be unknown.

When evaluating the example DSL code from Fig. 1 (index 2,
lines 3-12), the domain operation puts() results in a pretended
method call on the interpreter instance. Right before the call, its

Figure 1. Overview of the Execution of the embedded DSL Pattern in Groovy

DSL Script

01 def triDSL = TrivalentDSL.getInterpreter()
02 triDSL.eval {
03 puts "T is", T
04 puts "F is", F
05 def x = U
06 puts "x is", x
07 puts "T and F is", T & F
08 puts "T or F is", T | F
09 puts "not(T) is", not(T)
10 puts "T and x is", T & x
11 puts "T or x is", T | x
12 puts "not(x) is", not(x)
13 }

T:True

F:False

U:Unknown

&:BinaryOperator

|:BinaryOperator

(*) DslProg = DslName ".eval" DslBlock
(*) DslBlock = LCB Code RCB
(*) LCB = "{"
(*) RCB = "}"
(*) Code = { Expr [";"]"\n" }
(*) Expr = HostExpr | DslExpr
(*) HostExpr = (BNF of host language for methods)

DslExpr = Const | Var | UnOp DslExpr |
DslExpr BiOp DslExpr

Const = "T" | "F" | "U"
Var = Id
Id = {"a" | … | "z"}?
UnOp = "not"
BiOp = "&" | "|" (and/or)

DSL Syntax

isTrue(): boolean
isFalse(): boolean
isUnknown(): boolean
and(Trivalent other): Trivalent
or(Trivalent other): Trivalent
not(): Trivalent
valueOf(boolean v): Trivalent
toString(): String

Trivalent

True False

T: Trivalent
F: Trivalent
U: Trivalent

getInterpreter()
eval(Closure cl): Object
puts(String s, Bool b) : void
not(Trivalent tri)

TrivalentDSL

DSL Meta Model

Runtime Objects

2

1

a

b

d
c

e

f

g

Unknown

3

4

4

parameters must be evaluated. Using the literal T as the second
parameter results in a pretended property access on the interpreter
instance that returns an instance of True, this is indicated by
index b. Next, the call to puts() is executed with the evaluated
parameter (index c). Line 4 is analog to line 3. In line 5, an un-
typed Groovy variable is defined that refers to an instance of Un-
known; that value is printed out in line 6. In line 7, “T & F” is
mapped by Groovy to a call “T.and(F)” (index d) because this
operator is directly defined on Trivalent there is no need to
define an operator method and() in the DSL. At runtime,
T.and(F) with result in Trivalent value that again can be
referenced and which can further be used in calculations. In the
same way, “T | F” is mapped to “T.or(F)” (index e). In con-
trast, in line 9, “not(T)” is invoked on the interpreter instance
(index f). The remaining lines are just repetitive.

3.3 Reasoning on the EDSL Approach
Using the EDSL approach to define extensions makes it is easy to
later extend the DSL syntax: We inherit from an existing interpre-
ter class and add new properties and methods for additional key-
words. In particular, we do not need to create and maintain the
code of abstract syntax tree nodes. By reusing the Groovy syntax,
the interpreter instance can directly work on the types of the do-
main meta-model. Because we directly work with references, we
also do not need to resolve identifiers. An important detail makes
the EDSL approach more agile. Most interpreters and compilers
are implemented with a large loop around a switch-case-block that
entangles the logic of every expression type. Hence, whenever, we
add a new literal or operator there is a missing case in this badly
maintainable switch-block, thus the interpreter will break.

In the EDSL approach, this logic is separated into designated
methods, which can easily be added or removed. Further, we can
even refine the interpreter using inheritance and OO method dis-
patch will take care of finding the correct method implementation
that handles an expression of a certain type.

4. Embeddeding DSLs into AspectJ Advice
Most popular AOP languages, in particular AspectJ, do not pro-
vide the necessary features to implement EDSLs following the
pattern presented in Sec. 2. A solution would be to write a new
aspect language from scratch that supports the EDSL pattern.
However, we would have to implement features and tools availa-
ble for general-purpose aspect languages.

We suggest a more pragmatic techniques to extend general
purpose aspect languages with support for embedding domain-
specific extensions (DSXs)) into advice: We have implemented a
simple extension of AspectJ that allows implementing advice in
Groovy; using EDSLs in pointcuts is part of our ongoing research,
The possibility to use Groovy in advice blocks, brings in the ne-
cessary language features to embed DXSs into AspectJ advice.

Fig. 3 (a) shows a simple aspect that uses the proposed extension.
Aspects and pointcuts are defined in AspectJ syntax. In contrast,
the advice can be implemented in Groovy syntax. The advice
body uses the new keyword groovy to directly use Groovy code
for implementing the advice. In line 4, the groovy keyword
indicates that a Groovy code block will follow. Next, all variables
that should be accessible from Groovy are selected through a
comma-separated list that is defined between the parenthesis; in
this example, we only want to access thisJoinPoint. Finally,
the Groovy code block is enclosed in curly brackets (lines 4 to 6).
When the advice is executed at runtime, the extension will auto-
matically bridge to advice execution in Groovy. The most impor-
tant advantage in terms of flexibility comes from the Groovy
language features that open us the possibility to embed DSLs.
Still, our extension comes with further support that helps integrat-
ing with Groovy, e.g., the variables that are automatically made
available to advice. The direct integration and the conventions
how this language bridge is designed distinguish the extension
from using the Java 6 scripting package.

Now that we understand how Groovy can be used in advice
implementations, we can discuss how DXSs can be embedded
into advice code. Fig. 3 (b) shows an aspect that uses the Triva-
lentDSL from Fig. 2. The SampleUseDSL aspect uses the
groovy keyword to escape to Groovy syntax. In line 6, the ad-
vice obtains an interpreter instance of the trivalent DSL. In the
following line, we pass a DSL code block to the eval() method
of the interpreter. This code block allows directly writing DSL
expressions into advice, such as T & (F | U) in line 8.

Note that, the embedded DSL is used as a domain specific ex-
tension (DSX) that is dynamically linked into the advice language

Figure 3. Usage of (a) a Groovy code block, and (b) an EDSL.

Figure 2. DSL interpreter class for the trivalent logic.

01 public class TrivalentDSL implements DSL {
02
03 static DSL getInterpreter() {
04 DSLCreator.getInterpreter(
05 new TrivalentDSL());
06 }
07
08 Object eval(Closure cl) {
09 cl.delegate = this;
10 cl.resolveStrategy = DELEGATE_FIRST;
11 return cl.call();
12 }
13
14 /* Literals */
15 Trivalent T = new True();
16 Trivalent F = new False();
17 Trivalent U = new Unknown();
18
19 /* Operations */
20 Trivalent not(Trivalent tri) {
21 return tri.not();
22 }
23
24 void puts(String str,
25 Trivalent tri) {
26 println "$str $tri";
27 } }

// (A) SampleUseGroovy.aj
01 public aspect SampleUseGroovy {
02
03 before(): execution(* *.*(..)) {
04 groovy (thisJoinPoint) {
05 println "Hello $thisJoinPoint"
06 } } }

// (B) SampleUseDSL.aj
01 public aspect SampleUseDSL {
02
03 before(): execution(* *.main(..)) {
04 groovy () {
05 def triDSL;
06 triDSL=TrivalentDSL.getInterpreter()
07 triDSL.eval {
08 def expr = T & (F | U)
09 puts "Trivalent expression: ", expr
10 } } } }

5

at runtime. The concrete interpretation is performed by the
triDSL instance that receives all pretended property accesses
and method calls that are triggered from the DSL code. We could
easily change the semantics of DSL code, e.g., by replacing the
TrivalentDSL with a refined version that interprets the un-
known value by default as false. The usage of Groovy in advice
alone and the simple example DSL probably will not convince the
reader of the approach so far. For this reason, we provide a num-
ber of more sophisticated applications in the following.

5. Applications
The following example applications have been inspired from re-
lated work. They exemplify the possibilities to define similar ab-
stractions for a DSAL by using our extension.

A DSAL for generating Security Policies. In previous work [7],
we have proposed a domain-specific aspect language to enforce
security policies in composite applications. One task in the en-
forcement was to generate an XML representation of the security
requirements of a composite application in form of a WS-
SecurityPolicy policy [3]. The generated policy is used in a dy-
namic policy negotiation process between the composite and the
services that are called from the composite. When a composite
application communicates with an external Web service, first a
policy is generated that represents the requirements of the compo-
site. Next, the generated policy is matched against the WS-
SecurityPolicy policy attached to that Web service. Such a match
determines whether the requirements of both the composite and
the Web service can be fulfilled and whether communication can
be established.

We have implemented a new DSX for generating WS-
SecurityPolicy using the EDSL approach. The resulting DSAL
could be used in the course of [7]. This would release security
developers from processing XML to generate security policies.
The DSX defines the keywords confidentiality, integr-
ity, and token (authentication) to declare high-level security
requirements, in terms of WS-SecurityPolicy: security assertions.
confidentiality, integrity are domain literals in the

policy DSL. In contrast to the other keywords, token is defined
as a unary domain operation that is parameterized with a token
type, e.g. the parameter SAML selects a certain token format to be
used. The aspect defined in Fig. 4 uses this DSL to generate the
policy XML artifact. In DSL code, different assertions can conve-
niently be combined using the operators “&” (and) and “|” (or).
Finally, the policy can be converted to a string representation
using the domain operation convertToPolicy(), resulting in
the following XML snippet:

<Policy><ExactlyOnce><All>
 <Confidentiality>...</Confidentiality>
 <Integrity>...</Integrity>
 <SecurityTokenRefe-
rence>...<saml>...</saml>...
 </SecurityTokenReference>
</All></ExactlyOnce></Policy>

Note that, the actual specification of the security requirements
boils down to the high-lighted lines 12 and 13, and that there are
no XML processing details in the code.

For this DSL, the policy meta-model defines classes for each spe-
cific Assertion type: ConfidentialityAssertion,
IntegrityAssertion, TokenAssertion, and so on. This
domain types are then used by the policy interpreter. The EDSL
implementation PolicyDSL defines the properties confiden-
tiality, integrity, and SAML and the methods token()
and convertToPolicy(). When executing the DSL block,
the properties defined for assertion keywords reference corres-
ponding instances of the policy meta-model, e.g., for confi-
dentiality, an instance of the class
ConfidentialityAssertion is referenced. The meta-
model classes of assertions can be combined because they over-
write the operator methods and() and or(). When combining
assertions, a special combinator assertion is returned according to
the WS-Policy framework [1], i.e., and() returns an AllAs-
sertion for which all contained assertions must be fulfilled,
similarly, or() returns an ExactlyOnceAssertion. The
embedded DSL for policies and the integration of its domain me-
ta-model allows conveniently constructing an XML structure di-
rectly in an advice without dealing with technical details and by
hiding the details of XML representations for each assertion type.

Composition of two DSXs. In practice it is often the case that
problem domains overlap, e.g., the assertions of the PolicyDSL
can be used as elements in the domain of the set theory. In such a
case, instead of building a new DSX that combines the two do-
mains, it is desirable to reuse the two existing DSXs for policies
and sets in order to combine them into one. To show how several
DSXs can be combined in our approach, we have implemented
another reusable DSX that allows performing set operations from
set theory on Collection types, called SetsDSL. Among
other things, this DSL defines the operations union(), inter-
sect(), difference(), and powerSet() to construct new
sets and subsets. We have defined additional functions that per-
form operations on elements of sets: conjunction() uses “&”
to conjunct all elements, disjunction() uses “|”, and con-
vertToDNF() converts a set of subsets to disjunctive normal
form.

Figure 4. EDSL for generating security policies in advice.

01 public aspect PolicyGeneratorAspect {
02
03 pointcut serviceSelection() :
04 execution(* Registry.find(..));
05
06 before() : serviceSelection() {
07 String policy = null;
08 groovy(policy) {
09 policyDSL = new PolicyDSL();
10
11 policyDSL.eval {
12 asserts = confidentiality &
13 integrity & token(SAML);
14 policy = convertToPolicy(asserts);
15 }
16 }
17 //access result in policy …
18 } }

6

The combined logic of both DSXs – the PolicyDSL and SetsDSL
– can be efficiently used to construct a policy that allows several
policy alternatives. Therefore, we would like to use the types from
the policy domain, namely assertions, in the domain of sets, so
that assertions are simply handled as elements of sets. A good
example in the domain of [7] is generating a policy that allows all
possible assertion combinations for a set of selected assertions,
which represents the available security features for one partner.
The code in Fig. 5 exemplifies how a composition of DSXs can be
used in order to quickly derive such a policy that accepts all poss-
ible assertion combinations. In line 4 and 5, the two interpreters of
both DSLs are retrieved. In line 6-8, we then combine the two
interpreters using the DSLCreator. An interpreter instance is
created that in particular understands the keywords of both DSXs.
Next, we can use this combined interpreter to evaluate code that
use operations from both domains. In lines 11 to 12, we construct
a set of assertions. In line 13, we calculate all possible subsets of
this set. In line 14, we create all possible assertion combinations
from the set by building the disjunctive normal form of the in
allSubsets contained subsets and elements, and finally in line
15 the generated policy is made accessible to the AspectJ advice
parts by assigning it to the Groovy code block parameter policy
from line 3. Note that, the operation convertToDNF() internally
uses the conjunction() and disjunction() operations
defined in SetsDSL, which apply “&” and “|” to the elements.
The most important fact at this point is that the ad-hoc polymor-
phism of Groovy, maps the operations and() and or() to the
implementations defined in the PolicyDSL. Therefore, con-
junction() and disjunction() can be applied to arbitrary
objects that define and() and or(). This detail allows semantic
and reusable compositions of different DSX in our approach to be
easily achieve at virtually no additional costs.

Control Flow Abstractions in DSALs. Control flow abstractions
can reduce the complexity of aspects by providing constructs to
set up a predefined control flow. A sophisticated example for this
kind of abstraction in DSALs is presented in [14], in which par-
ticularly an approach is proposed that helps solving the problem
of tangled aspect code. That is fragments of aspect code corres-
ponding to a “sub-concern” that is tangled with code of other
“sub-concerns” in advice code. The KALA language [14] uses
“begin”, “commit” and “abort” blocks to separately declare trans-
actional properties for each sub-concern in advanced transaction
management. Later, the KALA weaver composes all sub-concerns
and weaves them the resulting transactional demarcation into a
transaction’s functional code.

Our solution can also be used to define similar domain-specific
control flow abstractions as in KALA. For demonstration purpos-
es we have implemented a simplified but similar realization of the
“begin”, “commit”, and “abort” blocks from KALA. Because we
are only interested in the language abstractions KALA provides,
we neither fully re-implement all features in KALA nor realized a
transaction monitor. When using our approach sub-concerns can
be defined using ordinary aspects. Fig. 6 shows an advice excerpt
that is executed before a transactional method so that transaction-
al properties for the executed method are defined. In lines 2-3, an
EDSL for the advanced transaction models is instantiated that
defines the KALA keywords: begin, commit, and abort,
which define control flow abstractions. Further, the EDSL defines
the domain literals and operations for the other KALA statements
that in particular define transactional properties (dep, alias, termi-
nate, and so on). Note that, we initialize the interpreter with con-
text information about thisJoinPoint, so that defined
properties can be related back to the currently executed method.
The keywords such as begin are implemented as domain opera-
tions that take a closure as the only parameter. The closure is then
stored in a list associated with the join point. Note that, other sub-
concerns are defined in similar aspects that declare different trans-
actional properties. In our approach, e.g., before actually execut-
ing the transactional method, a special aspect collects all “begin”
closures from the list that is associated with the current join point.
The aspect executes the collected closure in order, which results
in the necessary demarcation code.

6. Implementation
We have implemented the prototype as a source code transformer
that transforms aspects with groovy statements to code compila-
ble by existing tools. Before compilation, the transformer produc-
es two kinds of outputs for each DSAL aspect file. On the one
hand, for each Groovy block a Groovy advice script is produced
that contains the advice code. On the other hand, for each DSAL
aspect, a corresponding aspect in pure AspectJ is written, which
contains hooks that replace the Groovy code blocks and that
bridge to the Groovy advice script at runtime. When compiling,
AspectJ aspects are woven into the program using the AspectJ
compiler. At runtime, the Groovy advice scripts are executed us-
ing the Groovy engine.

In Fig. 7, we show the transformed aspect from Fig. 3 (b). For
transformed aspects, pointcuts declaration stays the same. Only
the advice code blocks in which Groovy advice is implemented
are replaced. In Fig. 7 line 4, first a HashMap is created that con-
tains key-value pairs for each parameter to be made available to
the Groovy advice. The GroovyShell and Script in lines 5
to 8 are necessary to execute the Groovy advice code. In line 9,
the advice file is executed as a Groovy script. The advice script
returns a GroovyObject that holds a closure with the previous-
ly extracted advice code. Line 10 invokes run(context), what

Figure 5. Composition of DSXs in advice.

01 before() : serviceSelection() {
02 String policy = null;
03 groovy(policy) {
04 policyDSL = new PolicyDSL();
05 listSetsDSL = new ListSetsDSL();
06 combinedDSL = DSLCreator.
07 getCombinedInterpreter(
08 policyDSL,listSetsDSL);
09
10 combinedDSL.eval {
11 choices = [confidentiality,
12 integrity, token(SAML)];
13 allSubsets = powerSet(choices);
14 allCombis = convertToDNF(allSubsets);
15 policy = convertToPolicy(allCombis)
16 }
17 }
18 //access result in policy …
19 }

Figure 6. Advanced Transaction Sub-Concern.

01 groovy(thisJoinPoint) {
02 def atxDSL = AtxDSL.
03 getInterpreter(thisJoinPoint);
04
05 atxDSL.eval {
06 begin {
07 dep(ConcernA, ad, self);
08 dep(ConcernA, wd, self);
09 dep(ConcernA, scd, self);
10 }
11 commit { terminate(self); }
12 abort { terminate(self);
13 } } }

7

will finally call the advice closure containing the EDSL code.
When evaluating the advice closure, an access to a non-local vari-
able, such as thisJoinPoint in Fig. 6 line3, is treated as an
access to an advice variable in the context. Such an access results
in a pretended property access on the context HashMap. The
map then uses the variable identifier as the key to lookup if there
is a variable defined and returns the corresponding value.

Note that the hooks for around advice are slightly different
than that for before or after advice. The AspectJ proceed()
statement is wrapped in an anonymous inner class instance that is
stored in the context HashMap, before bridging to Groovy. Be-
cause the inner class instance is stored in the map with the key
“proceed”, Groovy advice then can proceed join points simply by
invoking proceed.call(<params>). Another difference in
the hooks for around and after returning advice is that they must
take care of possible returning parameters.

Composition of several DSXs that are provided as EDSLs is
possible using the designated DSLCreator tool provided in our
approach. With this, one can instantiate a combined interpreter by
invoking the getCombinedInterpreter() method and
passing two EDSL interpreter instances to it. This method returns
a combined interpreter instance. Using the MOP, the combined
interpreter intercepts all properties accesses and method calls that
are made in DSL code and automatically dispatch them to one of
the combined EDSLs instances. Internally the combined interpre-
ter holds a list of DSL interpreters to be combined. When receiv-
ing a property access or method call, the combined interpreter
looks up whether the property or method is defined in one of the
interpreters in the ordered list. If that is the case, it dispatches the
access or call to that instance.

7. Conclusion
In this paper, we have presented an extension for AspectJ to sup-
port embedding DSLs into advice code. The approach follows a
set of instructions to implement a domain-specific extension that
can be dynamically linked to use DSL code in advice. Extensions
once implemented can be refined and composed. The simplicity
with which new domain-specific advice languages can be created
supports idea to embed DSL into aspect language. However, the
current prototype can only embed DSLs into advice. It can only
build limited domain abstractions in pointcuts using the abstract
pointcuts of AspectJ. The prototype cannot be used to create do-
main-specific aspect languages that need sophisticated abstrac-
tions in the pointcut language. This limitation is mainly because
we are using AspectJ for the static weaving of aspects. Therefore,

our ongoing research focuses on how to use embedded DSLs in
pointcut languages.

Acknowledgments
We would like to thank Christian Hofer and Karl Klose for the
valuable comments and discussions.

References
[1] AspectJ homepage. http://www.eclipse.org/aspectj/.
[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W.

Griswold. An overview of AspectJ. In Proceedings of the ECOOP
2001, Budapest, Hungary, 2001.

[3] WS-SecurityPolicy, http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.pdf.

[4] Groovy Homepage, http://groovy.codehaus.org/.
[5] D. König. Groovy in Action. Manning Publications, New York,

Januar, 2007.
[6] G. Laforge and J. Wilson. Tutorial: Domain-Specific Languages in

Groovy. QCon 2007 Conference, London, 2007.
http://glaforge.free.fr/groovy/QCon-Tutorial-Groovy-DSL-2-
colour.pdf

[7] T. Dinkelaker, A. Johnstone, Y. Karabulut and I. Nassi. Secure
Scripting Based Composite Application Development: Framework,
Architecture and Implementation. In CollaborateCOM 2007, White
Plains, NY, October 2007.

[8] P. Hudak. Building domain-specific embedded languages. ACM
Comput. Surv. 28, December 1996.

[9] P. Hudak. Modular Domain Specific Languages and Tools. In Fifth
International Conference on Software Reuse ICSR'98, 1998.

[10] M. Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages? June 2005.
http://martinfowler.com/articles/languageWorkbench.html

[11] Ruby homepage. http://www.ruby-lang.org/
[12] J. Cuadrado and J. Molina. Building Domain-Specific Languages for

Model-Driven Development. In Software, IEEE, Vol. 24 , No. 5, p.
48-55, September 2007.

[13] P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins, J. Lhotak, O.
Lhotak, O. de Moor, D. Sereni, G. Sittampalam and J. Tibble. abc :
An extensible AspectJ compiler. In Transactions on Aspect-Oriented
Software Development I, Vol. 3880 of LNCS, Springer, Berlin,
Heidelberg, Februar 2006.

[14] J. Fabry. Modularizing Advanced Transaction Management -
Tackling Tangled Aspect Code. PhD thesis, Vrije Universiteit
Brussel, 2005.

[15] J. Fabry, E. Tanter and T. D’Hondt. ReLAx: Implementing KALA
over the Reflex AOP Kernel. In Workshop DSAL’07, Vancouver,
Britisch Columbia, Canada, March 2007.

[16] C. Lopes and T. Ngo. The Aspect Markup Language and its support
of Aspect Plugins. ISR Technical Report UCI-ISR-04-8, University
of California, Irvine, 2004.

[17] C. Lopes. D: A Language Framework For Distributed Programming.
PhD thesis, College of Computer Science of Northeastern Universi-
ty, 1997.

[18] A. Bagge and K. Kalleberg. DSAL= library+notation: Program In
First Domain-Specific Aspect Languages Workshop, 2006.

Figure 7. AspectJ-to-Groovy Language Bridge (in AspectJ).

01 public aspect SimpleAspect {
02 ...
03 before() : pcexpr() {
04 //setup context HashMap with parameters
05 GroovyShell gshell = new GroovyShell();
06 try {
07 Script script = gshell.parse(
08 new File("<advicescript>.groovy"));
09 GroovyObject a = script.run();
10 a.invokeMethod("run",context);
11 } catch (Exception e) { ... } } }

