
Towards a DSAL for Object Layout in Virtual Machines
- Position Paper -

Stijn Timbermont
Vrije Universiteit Brussel, Belgium

stimberm@vub.ac.be

Bram Adams
Ghent University, Belgium
bram.adams@ugent.be

Michael Haupt
Hasso-Plattner-Institut, University of

Potsdam, Germany
michael.haupt@hpi.uni-potsdam.de

Abstract
High-level language virtual machine implementations offer a chal-
lenging domain for modularization, not only because they are in-
herently complex, but also because efficiency is not likely to be
traded for modularity. The central data structure used throughout
the VM, the object layout, cannot be succinctly modularised by
current aspect technology, as provisions for static crosscutting are
not fine-grained enough. This position paper motivates the need
for a declarative, domain-specific language for handling the tan-
gled object layout concern. Based on observations in real-world
VM implementations, we propose such a language, D4OL. It com-
bines a two-level layout mapping, constraints and an engine to di-
vide responsibilities between VM component and VM developers.
We consider a domain-specific language like D4OL a necessary
complement to behavioural aspect languages in order to modular-
ize VM implementations.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques

Keywords Object Layout, Virtual Machine, Domain-Specific As-
pect Language

1. Introduction
High-level language virtual machine (VM) implementations [11]
are inherently complex systems, as they provide a wide range of
highly interacting abstractions to applications running on top of
them. For example, a Java VM provides both automatic memory
management and integrated support for multithreading and syn-
chronization such that the Java programmer does not have to take
care of possible interactions between them.

The resulting high complexity in VMs is a consequence of the
high degree of crosscutting interactions between the different parts
of the VM. Tackling these crosscutting concerns by using aspect-
oriented programming in the VM is a relatively recent idea, and so
is the idea to define a domain-specific aspect language for VM im-
plementations [2, 6]. In this position paper we focus on a particular
concern of a virtual machine: the object layout. This is crucial to the
VM as it serves as the foundation on which other functionality is
built, such as the execution system (interpreter or JIT compiler), au-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop DSAL ’08 April 1st, Brussels, Belgium.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

tomatic memory management (garbage collection), multithreading
facilities, etc. Note that this does not only apply to the implementa-
tion of object-oriented programming languages; arrays or structures
can also be considered as “objects”.

We identify three object layout characteristics which, taken to-
gether, prevent existing approaches from modularising the object
layout. Firstly, the object layout is a highly tangled concern, be-
cause it combines contributions of several subsystems of the VM.
Secondly, the object layout is a very structural concern (as opposed
to behavioural), as it simply describes how the concepts provided
by the VM are mapped onto the memory of the host machine.
Thirdly, in order to make the VM memory efficient, there are a
lot of optimizations that can make the object layout implementa-
tion much more complicated than its conceptual functionality. We
further discuss these characteristics in Section 2.

From these three problems, we distill three requirements (Sec-
tion 3) for a domain-specific language for object layout and the cor-
responding interactions between the different subsystems. D4OL, a
DSAL for object layout, (Section 4) is an incarnation of these re-
quirements. It enforces distinct roles for the people involved with
the VM implementation and provides (semi-)automatic support to
refine the layout specification. Section 5 discusses our approach,
while we summarize our contributions in Section 6.

2. Object and Layout in Virtual Machines
In this section we explain the three issues which are characteristic
for the interactions between object layout and other concerns.

2.1 Object layout is tangled
The object layout plays a central role in a VM implementation: Al-
most every subsystem uses (i.e. depends on) it. This is not neces-
sarily problematic for modularity, because the object layout could
still provide a clean interface using standard functional abstrac-
tions. However, the fact that several subsystems also contribute to
the object layout is problematic. Here are some examples:

• A mark & sweep garbage collector [7] must be able to tell the
difference between live objects and garbage. The marking phase
traverses the object graph and marks every live object. The
sweeping phase traverses the entire heap and adds unmarked
objects - garbage - to the free-list. To implement this, every
object should reserve (at least) a single bit to keep track whether
or not it has been marked as live data.

• A reference counting garbage collector [7] keeps track of the
number of references to each object. Every time there is a new
reference to an object, the reference count of that object should
be incremented. If a reference disappears, the reference count
must be decremented. If the reference count reaches zero, the

object is garbage. To implement this, each object must reserve
some room to keep the reference count.

• Programming languages which integrate support for concur-
rency into the object model may require that each object carries
some information about its locking state.

• The execution environment (or more generally, the language
specification) may require that every object has a hash code.

The object layout contains information about different subsystems
and hence breaks abstraction boundaries. It reflects for example
the choice of garbage collector such that changing the latter is in
general not possible without changing the object layout.

The contributions of several subsystems to the object layout are
not always independent: whether or not it is actually necessary
to include a hash code in every object depends on the garbage
collector. If objects are never moved around, the memory address
of an object serves as a good hash code; otherwise, the memory
address of an object may change at any point during program
execution and is therefore not a good hash code.

2.2 Object layout is a highly structural concern
Rather than defining a lot of behavior and algorithms, the object
layout simply describes how the concepts provided by the VM are
mapped onto the memory of the host machine. The implementation
often consists solely of type definitions with the appropriate getters
and setters. Even if the latter involves low-level operations such as
bit-shift operations, their logic is rather simple.

The problem is that the data definitions contain elements cor-
responding to different subsystems in the VM. Several design de-
cisions, for example the choice of garbage collection scheme, are
encoded in the type definitions. These cannot be separated with cur-
rent AOP techniques because these are not geared for such struc-
tural concerns.

2.3 Object layout is critical for VM efficiency
The design of an object model for a particular programming lan-
guage is not an easy task. It has to fulfill the requirements of all the
subsystems in the VM, especially the execution system. Some OO
programming languages such as Smalltalk [3], prescribe that every-
thing is an object, even numbers. However, actually representing a
number as a reference to an object with a header and a class pointer
would be extremely memory inefficient. Other dynamically typed
languages also have this problem. A common trick to solve this is
to use the low-order bit in an object reference as a type tag: if the
bit is “0”, the value is an actual object reference, but if it is “1”, the
rest of the value is an immediate signed integer (not on the heap).

The object header is another part of the object layout that must
be carefully designed. It contains all the per-object information
(e.g. type, size, a mark bit for a mark & sweep garbage collector,
etc), which is usually (not always) stored in the object header itself.
There are systems [9] that store the mark bit in a so called bitmap.
The advantage is that in order to know whether an object is marked,
it is not necessary to actually load the object. This approach has
the additional benefit that the bitmap is completely separated from
the rest of the object layout contributions. However, since there
is an additional overhead, this approach may be undesirable for
performance reasons.

2.4 Summary
It is clear that the object layout plays a central role in a VM im-
plementation. Based on performance criteria, an implementation
approach where each subsystem keeps track of its own contribu-
tions might be undesirable; however, an implementation approach
that combines all contributions yields a highly complex and mono-

lithic object layout implementation that is difficult to program and
to evolve because of structural concern tangling.

3. DSAL requirements
From the three characteristics of the previous section, we distill a
number of expected benefits for a domain-specific language geared
towards composition of a VM’s object layout. A first requirement
is modular reasoning. The fact that the object layout contains con-
tributions from different concerns worsens the understanding and
independent evolvability of the various VM subcomponents. De-
velopers should be able to declaratively state their object layout
requirements independent from the other components in the VM.
This tackles the tangling and (partially) structural object layout
characteristics.

To obtain an efficient implementation, fine-grained control is
needed over the composition of a particular VM’s object layout
from the various components’ requirements. Common object lay-
out and data structure knowledge should be combined with spe-
cialised, human expertise to achieve the most optimal object rep-
resentation satisfying the different components’ needs. We encour-
age a declarative, (semi-)automatic approach for this. The former
enables explicit documentation of design choices for the object lay-
out, whereas tool support lets the object layout expert focus on the
constraints for a given VM. In addition, it becomes easy to check
whether changes in VM components have a positive or negative
impact on the object layout, or to experiment with small variations
in constraints.

Finally, the resulting object layout code (type definitions and
getters/setters) should be generated automatically, as this is quite
tedious to implement for each successfully specified object layout.
The declarative composition specifications carry enough informa-
tion to drive this code generation.

4. A DSAL for Object Layout - D4OL
Our proposed approach is depicted in Figure 1. We organise the
object layout implementation in two layers:

High-level description Each module (e.g. a reference count col-
lector, a mark & sweep collector, a bytecode interpreter, a JIT
compiler) has its own high-level description of the object lay-
out, i.e. describes what it expects from the object layout. Ir-
relevant information is - by definition - not present. By con-
sequence, a particular high-level object layout description that
belongs to a certain module is inherently incomplete: it only
contains the contributions of that module to the object layout,
of which some are shared with other modules. The high-level
description serves more as an interface to the eventual object
layout than as an actual implementation. It describes what in-
formation the module requires from the data objects it operates
on. A key idea for this first layer is that there is abstraction from
any particular VM.

Low-level mapping The goal of this layer is to describe how to
map the incomplete and high-level object layout description
onto actual memory. Key to this layer is that there is less ab-
straction: it is specific to a particular VM. However, there is
still modularization. Each module has its own low-level map-
ping, but the decisions that are made in the mapping may be
based on knowledge about the entire VM (e.g. the language that
is implemented by the VM might influence certain choices in
the memory management object layout). Finally, the different
views on the object layout should be merged into one complete
implementation of it, starting from the high-level descriptions
and the corresponding low-level mappings. It is exactly this step
we are trying to automate. However, in order to do so, some in-

Module
implementation

High-level object
layout description

Low-level object
mapping

MSRC JIT INT

Memory
management

Execution
environment

OL

Constraints

VM
 S
pe

ci
fi
c

VM
 I
nd

ep
en
de
nt

Merging

Figure 1. Visualisation of a (partial) VM architecture using D4OL
for expressing module specific contributions to the object layout.

formation should be provided that indicates which parts of the
different modular definitions refer to the same entity and which
do not. This information is provided as a set of constraints be-
tween different object layout definitions.

We further explain these layers in the following sections, in terms
of the example of Figure 1.

4.1 High-level object layout description
Suppose we are building a VM for Smalltalk [3]. As garbage
collector, we use mark & sweep. The execution system consists
of a bytecode interpreter. These two subsystems have their own
view on the object layout. During the mark phase, the heap is
traversed in order to look for live data. During the sweep phase,
every object not encountered during the mark phase is collected.
For the object layout, this means that each object can be either
“free” or “marked”. Furthermore, the mark phase must be able to
traverse an object in order to find other live data. The interpreter
has a rather different view: in Smalltalk each value is an object,
instance of a particular class. We would like to make an exception
for integers, in order to reduce overhead, but neither the interpreter
nor the garbage collector should not have to care about this.

The high-level description should be as declarative as possible,
and should only contain that information which is actually required
by the module at hand. Inspired by algebraic data types, the code
for expressing the high-level description for the mark & sweep view
on the object layout might look as follows:

data Object = FreeObject [Reference]
| MarkedObject

type Reference = PointerTo Object

This definition:

• simply states that an object is either a marked object or a free
object, and that a free object has a collection of references to
other objects which might be traversed;

• does not say that an object can only have references to objects
and not integers or other data; it just states that the mark &
sweep module is only interested in object references; similarly,
a marked object still has object references, but they are not
needed anymore by the garbage collector;

• does not specify how the distinction between a free and a
marked object should be made: with an extra bit inside the
object or with a separate data structure which keeps track of
this.

The interpreter’s view might be expressed as follows:

data Object = Object ClassPointer [Value]
type Value = Reference

This definition says that each value is a reference to an object
that contains a class pointer and some fields (which are values).
However, it does not specify that integers should be treated differ-
ently, because the interpreter does not care about this.

4.2 Low-level mapping
Before we try to combine these independent, incomplete and rather
different definitions, we add the refinement that integers should be
treated differently. This should be possible with the same degree of
declarativeness as the high-level description:

data Value = Reference Address
| Number Int31

type Address = Word31
type ClassPointer = Address

Note that we specify the amount of space used for the address of
an object reference or for the immediate data in the number, namely
31 bits. This is not surprising, as we need one bit to tag the value.
Because this impacts the valid range of integers, this knowledge is
included in the specification of the VM. We also specify that the
class pointer should consist of 31 bits. This is a good example of
the difference between the high-level descriptions and the low-level
mappings: the bit that becomes available in the interpreter object
layout is used as “mark bit” for the mark & sweep object layout.

4.3 Merging
Now it is time to combine the different definitions. This is auto-
mated as much as possible. The final result is an actual implementa-
tion for the object layout which fulfills the view of every subsystem
of the VM. There are two main steps:

• the high-level constructs used in the definitions should be au-
tomatically converted to more concrete, lower level constructs
(not to be confused with the low-level mapping described ear-
lier). E.g. the “|” operator can be translated in an extra bit that
serves as a tag to distinguish between the two cases. In general,
this step deals with the high declarativeness of D4OL.

• merging the separate “modular” definitions into one “tangled”
definition. However, in order to allow this, we have to spec-
ify which parts of the different definitions are shared between
modules, and which parts are unique. In other words, we ex-
press constraints which resolve accidental name clashes or dif-
ferences in the high-level descriptions. As long as these are sat-
isfied, the generator is free to for example arrange fields or bits
differently. In general, this step deals with the tangling in the
object layout.

The following code shows the constraints for merging the object
layout definitions of mark & sweep and the interpreter,

MS.Object = INT.Object
MS.Object.[Reference] = INT.Object.[Value] where

Value @ (INT.Reference INT.Address)

Again in a highly declarative fashion, it says that the definitions
for Object in the mark & sweep module and the interpreter mod-
ule refer to the same entity, and that the set of references in the
mark & sweep version of Object corresponds to the set of val-
ues in the interpreter definition. The @ operator should be read as
“matches with” and serves as a kind of filter: the set of references in
MS.Object consists of those values in INT.Object that are actual
object references and not numbers.

Based on the high-level descriptions, the low-level mappings
and the merging constraints, it should be possible to obtain the
object layout implementation. Both “|” operators can be translated
into an additional bit, based on the low-level information that cer-
tain data only uses 31 bits. By specifying which definitions corre-
spond, we can merge the definitions and generate a tangled object
layout implementation starting from modular definitions. The ob-
ject layout which the D4OL engine should produce might look:

data Object = Object Word31 Bit [Value]
data Value = Value Word31 Bit

This definition is clearly tangled: the definition of Object con-
tains both a 31-bit word for the class pointer, something that was
required by the interpreter, and a single bit to distinguish between
free and marked objects, something that was required by the mark
& sweep object layout. This definition is also more low-level, as
a value consists of a 31-bit word together with a single bit to dis-
tinguish between immediate integers and actual object references.
In other words, the D4OL engine helps us with building a concrete
object layout, starting from high-level descriptions and some addi-
tional information on how these descriptions should be mapped.

4.4 Integration with base language
The final point to discuss is how the generated code should look
like, or how the modules that use the object layout can actually
be implemented. Recall the high-level object layout description for
mark & sweep: the only available information is that a reference
is a pointer to an object and that an object is either a free object
with a set of references, or a marked object. As this is the only
information available to the mark & sweep module, the generated
code should provide operations that correspond to this high-level
definition. The following code snippet (in C) illustrates some of the
available constructs:

void mark() {
Reference current;
Object obj;
...
obj = * current;
free_or_marked(obj, { // The object is free

iterate(references, {
... reference ... });

}, { // The object is marked
... });

}

Obtaining an object through a reference is done with the deref-
erence operator. Distinguishing a free from a marked object is pos-
sible by means of the free_or_marked macro, which takes an ob-
ject and two code blocks. If the object is free, the first block is ex-
ecuted in the context of an extra variable references; if marked,
the second block is executed. The references can be traversed with
the iterate macro. Another possibility is to provide an iterator,
with corresponding functions hasNext and next. The generated
code heavily uses typedefs and macros in order to provide the de-
sired interface. We expect the compiler to be able to remove any
unnecessary data accesses introduced by these constructs.

5. Discussion
Is This AOP? Aspect-oriented programming [8] is widely equated
with its pointcut-and-advice (PA) flavour [10]. We deliberately
adopt the wider notion that AOP is about modularizing crosscut-
ting concerns. We are applying aspect-oriented abstraction to the
domain of VM implementations, or, rather to its sub-domain of
object model implementations.

The work described herein is but a small part of a definitely
more large-scale effort with the goal of supporting modularization
in VM implementations in general [2, 6, 5]. At various levels of
abstractions, various AOP mechanisms are employed.

Related Approaches The approach we present here seems to be
related to subject-oriented programming [4] and open classes [1].
Like in subject-oriented programming, we take the approach where
each module defines its own view on the object layout in a decen-
tralized way: there is no common base class or base object layout.
In open classes, this is the case.

6. Conclusion
In this position paper we motivate the need for a declarative and
domain-specific language for object layout in VMs, as this is a tan-
gled and structural concern. The language should enable modular
reasoning about the object layout for the different subsystems of
the VM without sacrificing performance. We present an architec-
ture where a VM independent layer, a VM specific layer and a set
of constraints allow the (semi-)automatic generation of the optimal
object layout implementation which fulfills the object layout inter-
faces for all VM subsystems.

References
[1] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.

Multijava: modular open classes and symmetric multiple dispatch for
java. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 130–145, New York, NY, USA, 2000. ACM.

[2] Yvonne Coady, Celina Gibbs, Michael Haupt, Jan Vitek, and Hiroshi
Yamauchi. Towards a domain-specific aspect language for virtual
machines. First Domain-Specific Aspect Languages Workshop,
October 2006.

[3] Adele Goldberg and David Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983.

[4] William Harrison and Harold Ossher. Subject-oriented programming:
a critique of pure objects. SIGPLAN Not., 28(10):411–428, 1993.

[5] Michael Haupt, Bram Adams, Stijn Timbermont, Celina Gibbs,
Yvonne Coady, and Robert Hirschfeld. Disentangling virtual machine
architecture. Extended version of [6], currently under review, 2007.

[6] Michael Haupt, Celina Gibbs, and Yvonne Coady. Disentangling
virtual machine architecture. 4th Workshop on Coordination and
Adaptation Techniques for Software Entities (WCAT). Co-located
with ECOOP 2007, Berlin, Germany, July 2007.

[7] Richard Jones and Rafael Lins. Garbage collection: algorithms for
automatic dynamic memory management. John Wiley & Sons, Inc.,
New York, NY, USA, 1996.

[8] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka,
editors, Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[9] YoungMin Kwon, Sameer Sundresh, Kirill Mechitov, and Gul
Agha. Actornet: an actor platform for wireless sensor networks.
In AAMAS ’06: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, pages 1297–1300,
New York, NY, USA, 2006. ACM Press.

[10] H. Masuhara and G. Kiczales. Modeling Crosscutting Aspect-
Oriented Mechanisms. In Proc. ECOOP 2003, 2003.

[11] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for
Systems and Processes (The Morgan Kaufmann Series in Computer
Architecture and Design). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

