
A DSL to declare aspect execution order

Antoine Marot ∗ †

Université Libre de Bruxelles (ULB)
amarot@ulb.ac.be

Roel Wuyts
IMEC Leuven and KU Leuven

wuytsr@imec.be

Abstract
Composing aspects is known to be problematic since unpredicted
aspect interactions may appear and may lead to erroneous weaved
programs. This paper focuses on one of these issues: the advice or-
dering around a join point. It views aspect composition issues as a
crosscutting concern that should be handled by a composition as-
pect. It proposes a domain-specific declarative aspect composition
language for composing aspects, and applies it on a number of ex-
amples.

Categories and Subject Descriptors D.1.m [Programming Tech-
niques]: Aspect-Oriented Programming; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Aspects, Software Composition, Evolution

1. Introduction
The goal of aspect-oriented programming is separation of con-
cerns, where each concern could be developed by an expert in
the problem domain tackled by that concern. A domain specialist
in transactional programming should be able to design a transac-
tional aspect language that could then be composed in programs
that need transactions. Initially these aspect languages were sup-
posed to be domain-specific languages, as illustrated by for ex-
ample the COOL language. Because of the complexity of design-
ing weavers for more-or-less general purposes aspect languages,
research on domain-specific aspect languages was taking the low
road. Recently, as shown also by this workshop series, domain-
specific aspect languages are on the rise again, for all kinds of do-
mains.

This paper is concerned with the domain of aspect-oriented pro-
gramming itself. It is a well-known AOP problem that composing
multiple aspects, even if each aspect works correctly when being
composed in isolation, is hard. We introduce a model where compo-
sition issues are considered as a crosscutting concern handled by a
composition aspect implemented using our domain-specific aspect
composition language. Our aspect composition language is declar-
ative (to let composers focus on the actual composition) and allows

∗A. Marot is a Research Fellow of the Fonds National de la Recherche
Scientifique (F.R.S.–F.N.R.S)
† This research is partially funded by the Interuniversity Attraction Poles
Programme Belgian State, Belgian Science Policy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop DSAL’08 April 1, 2008 Brussels, Belgium.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

to change composition orders at runtime (since this is needed in
practice, especially when the composed aspects were developed in
isolation).

Note that we submitted a paper similar to this one to the
AOSD’08 workshop ”6th Workshop on Software-engineering
Properties of Languages and Aspect Technologies”. We will attend
both workshops with a very similar position on aspect composi-
tion, but with a different focus. This paper focuses on the domain-
specificness of our aspect language. The other submission focuses
on the non-functional properties (the ’-ilities’) of the language.

The rest of the paper is structured as follows. Section 2 looks
in more detail at the problem of ordering advices. Section 3 de-
scribes related work, while Section 4 introduces our own solution.
Section 5 gives examples to demonstrate how frequently occurring
composition problems are addressed by the language. Section 6 dis-
cusses future work for this research. Section 7 concludes the paper.

2. Aspect Ordering Issues
When several advices execute at the same join point, it is impor-
tant to consider the order in which they execute. Indeed, a wrong
execution order can change the purpose of an aspect.

Take for example a workflow application with two aspects
CheckAccess and MonitorActions. These aspects intercept every
possible action a workflow user can take: CheckAccess executes the
action only if the user is allowed to, while MonitorActions prints
the name of an action when it is performed by a user. If advices of
MonitorActions were to be executed before those of CheckAccess,
every attempt to perform an action would produce a print (even
if the action wasn’t performed due to the access restriction). The
purpose of MonitorActions therefore has changed, since it was only
meant to print the names of actions that were performed.

This is an example which is very similar to the fragile pointcut
problem that has been observed when aspects evolve: ”The fragile
pointcut problem occurs in aspect-oriented systems when pointcuts
unintentionally capture or miss particular join points as a conse-
quence of their fragility with respect to seemingly safe modifica-
tions to the base program.” [3].

Since composition of aspects is a major problem for the seman-
tic of weaved programs, an AOP language should always allow
programmers to specify execution order. Moreover, to increase the
reusability of aspects in different compositions, this specification
should not be hardcoded within the concerned aspects.

3. Existing solutions
In this section, we’ll briefly introduce some existing techniques
to set execution orders around join points. We’ll first present an
example of an AOP program that obviously needs some ordering
and then show how ordering can be handled with a number of
existing solutions.

3.1 Running Example
A company has developed a client-server application for file host-
ing that is widely used. The server is used to host files. Customers
use a client application to upload files via the method send(). The
server checks all received files for viruses via the method vir-
usCheck(). When uploading files, the client software first encrypts
the files. Then the files are compressed in order to speed up the up-
load. The current system is implemented in a monolithic fashion.

The company envisions that in the near future they will probably
need to add support for other compression and security techniques,
which is hard to do in their current implementation. Having heard
about aspect-oriented programming they decide to use this technol-
ogy when reworking their implementation. More specifically they
want to implement the compression and decryption concerns using
two aspects. The company also wants to improve the performance
of uploading files. They noted that for the particular compression
algorithm they use it would be better to first compress the files and
then encrypt them. Of course they want the upgraded software to
be compatible with the existing older clients.

Because the antivirus analysis does not support compressed nor
encrypted files the program has to decrypt and uncompress them
beforehand.

Both the compression and the encryption functionalities are
crosscutting concerns and they are therefore implemented in the
upgraded software by the two following ASPECTJ aspects :

�
p u b l i c a s p e c t SecureUpload {

b e f or e (F i l e f) :
c a l l (∗ C l i e n t . send (. .)) && args (f) {

e n c r y p t (f) ;
}

b e f or e (F i l e f) :
c a l l (∗ S e r v e r . v i r u s C h e c k (. .))

&& args (f) {
d e c r y p t (f) ;

}
} ��
p u b l i c a s p e c t CompressUpload {

b e f or e (F i l e f) :
c a l l (∗ C l i e n t . send (. .)) && args (f) {

z i p (f) ;
}

b e f or e (F i l e f) :
c a l l (∗ S e r v e r . v i r u s C h e c k (. .))

&& args (f) {
u n z i p (f) ;

}
} �

Figure 1 shows that two join points are shared between the
SecureUpload and CompressUpload aspects. This mimics the two
behaviours that are possible: we can send either encrypted zip files
or zipped encrypted files. An execution order is therefore needed to
choose between these two possibilities.

Note that the choice between these two is composition-specific
and actually depends on the interplay between the compression
and encryption algorithms. Some compression algorithms work by
detecting file format specific information and adapting to it. In that
case the composition should do compression before encryption. On
the other hand other compression algorithms might yield better
results when given encrypted files because they exhibit certain
patterns that can be exploited by compression techniques.

send(File)

Client

virusCheck(File)

Server

«aspect»
CompressUpload

«aspect»
SecureUpload

(before) call(void Client.send(File))

(before) call(void
Server.virusCheck(File))

Figure 1. The client-server application including the two aspects.

An important point to make is that since the order can change
in different compositions, even when the same aspects are used,
information regarding the order should not be hardcoded in the
individual aspects.

3.2 Related Work
The problem of ordering multiple aspects is not a new one, and
there is a number of approaches and techniques that address this
problem. This section reviews three techniques: ordering aspects,
JAsCo, and declarative aspect composition.

Ordering aspects. One way to order advices is to let program-
mers express the order of aspects. If an aspect A is set to precede an
aspect B then all advices of A will always be executed before any
advice of B. This is the solution implemented in ASPECTJ[4] by the
declare precedence statement. That technique is also used in [2] by
the use of several operators between aspects. The major problem
with this approach is that it makes it hard to specify advice-specific
ordering (needed in our example). One could create an aspect for
each advice that needs its order, but that solution modifies existing
aspects and is awkward.

JAsCo. JAsCo[7] is an aspect-oriented extension of the Java
language that combines AspectJ’s expressive pointcuts with the
Aspectual Components[5] approach of aspect independency. In
JAsCo, the scope of an aspect is separated from its behavior. The
crosscutting behavior is described in so-called hooks. A hook is
composed of several advices and an abstract pointcut. Connectors
are used to instantiate hooks and bind their abstract pointcuts to
concrete ones in the program. Developers have to specify the advice
sequence they want in the connector. Moreover hook composition
strategies can be expressed that have the possibility to ignore hooks
in particular composition contexts.

To implement our example using JAsCo, we would need at
least four hooks, three connectors and one connector composition
strategy (which is different from hook composition strategies). The
connector composition strategies allows us to change dynamically
the applying order of the connectors and thus of the hooks they
contains. We need this since the advice ordering has to be altered if
the file is sent by an older client version.

While JAsCo offers lots of flexibility it does so in a very low-
level way. We expect a domain-specific approach to talk about
aspect composition to be more high-level.

Declarative aspect composition A third approach is declar-
ative aspect composition [6], based on declaring constraints be-
tween advices. The system then computes a possible ordering that
respects all of these constraints, if possible.

There are two kinds of constraints that can be declared: ordering
constraints and control constraints. An ordering constraint declares
that one advice has to be executed before another one. A control
constraint declares that an advice will be executed only if another
one succeeded. Execution orders cannot be changed dynamically,
meaning that in our example we cannot implement the backward
compatibility with older versions that use compressed encrypted
files instead of the newer encrypted compressed files. What we like
is that a composer can focus on the actual intended composition.

4. Adding rules to aspects
This section presents our model to handle execution ordering of ad-
vices around join points. Our model is a declarative approach based
on composition rules that declare constraints on the execution or-
der of advices. Moreover rules have a priority, and the rule with the
higher priority takes precedence in case of conflicting rules. The re-
sulting model therefore, in a sense, combines the expressiveness of
JASCO with the ease-of-use of the declarative aspect composition.

4.1 Composition Rules
Composition rules define constraints that the weaver will take into
account while weaving the advices around join points. They are
declared in aspects themselves: if an aspect needs to order its own
advices, it can declare the appropriate rules.

In order to manage the constraints crosscutting the aspects,
a new aspect has to be created that is dedicated to the aspect
composition concern. This aspect will therefore declare rules over
advices from different aspects.

Rules specify the context where they are active. If a join point
meets this context, the rule is activated and will be taken into
account on this join point.

The rest of this section presents the different constraints allowed
in a rule, shows how a rule defines its active context and explains
the extension mechanism useful to declare rule exceptions.

4.2 Constraints
There are four different constraints possible in rules:

1. Prec(a, b) : advice a has to be executed before advice b.

2. First(a) : advice a has to be the first executed advice.

3. Last(a) : advice a has to be the last executed advice.

4. Ignore(a) : advice a won’t execute.

We can use the constraints to express our example on com-
pression and decrypting. Assume that the advices for the exam-
ple are named as follows: zipFile, unzipFile, encryptFile and de-
cryptFile. We can then declare that zipFile precedes encryptFile
while decryptFile precedes unzipFile with these two constraints:
Prec(zipF ile, encryptF ile), Prec(decryptF ile, unzipF ile).

Doing this indeed declares the ordering we need. What is not yet
solved however is the backwards compability with the older client
version. To get such compatibility we need to be able to declare
another rule that will be activated only in one particular context
(when the received file is zipped instead of being encrypted). How
to do this is shown in the next section.

4.3 Active context
Since ordering problems sometimes arise in particular situations
only, the scope of a rule can be restricted to a precise context. This
is done by parametrizing the rule with a pointcut. On each join point
belonging to the pointcut, the rule will be applied.

In order to capture the advice interactions, we use a new point-
cut parameter : advices(a1, a2, ..., an). This parameter identifies
each join point where all of the n advices interact.

This can be used to solve the remaining problem in our exam-
ple, namely that, when the received file is zipped, we first have to
unzip it and then decrypt it. That’s what the following ASPECTJ-
like aspect shows:�

p u b l i c a s p e c t As pec t Com pos i t i o n {

p u b l i c boolean i s Z i p p e d (F i l e f) {
/∗ r e t u r n t r u e i f t h e f i l e i s z i p p e d ∗ /

}

d e c l a r e r u l e s e n d F i l e :
a d v i c e s (z i p F i l e , e n c r y p t F i l e) {

Prec (z i p F i l e , e n c r y p t F i l e) ;
} ;

d e c l a r e r u l e r e c e i v e F i l e :
a d v i c e s (u n z i p F i l e , d e c r y p t F i l e) {

Prec (d e c r y p t F i l e , u n z i p F i l e) ;
} ;

d e c l a r e r u l e oldV :
a d v i c e s (u n z i p F i l e , d e c r y p t F i l e) &&
i f (i s Z i p p e d (t h i s J o i n P o i n t . g e t A r g s () [0])) {

Prec (u n z i p F i l e , d e c r y p t F i l e) ;
} ;
} �
We are one step further to a full solution for our problem. One

last part remains, and that is what happens when the server receives
a compressed file. Indeed, the rules receiveFile and oldV declare
opposite constraints and will be both activated. This is an example
that shows that it should be possible to refine a rule with another
rule, which is shown in the next section.

4.4 Extension mechanism
In order to allow developers to declare rule exceptions, it is possible
to refine a rule by using another rule. This is done via an extension
mechanism between rules.

An extending rule has a higher priority than the rules it extends.
Therefore, when a conflict is found between two constraints in two
different rules (one extending the other), the conflict is solved by
choosing the constraint of the extending rule. The other constraint
is just ignored.

Note that the rule extensibility is also useful to handle unpre-
dicted changes since it allows to alter existing rules in order to han-
dle new cases.

In our example, we can now declare that when the rules receive-
File and oldV interacts, the constraint of oldV is chosen.�

d e c l a r e r u l e oldV ex tends r e c e i v e F i l e :
a d v i c e s (u n z i p F i l e , d e c r y p t F i l e) &&
i f (i s Z i p p e d (t h i s J o i n P o i n t . g e t A r g s () [0])) {

Prec (u n z i p F i l e , d e c r y p t F i l e) ;
} ; �

5. Examples
This section presents two other examples using composition rules
to improve both aspect expressivity and composability.

5.1 Using rules to (de)activate aspects dynamically
Let’s imagine a software where two aspects are intended to react
visually to certain events. Since the user doesn’t want two visual-
izations for a single event, the following aspect enables a choice
between both at launch. The example shows how rules are used to
dynamically ignore execution of certain aspects.

�
p u b l i c a s p e c t C h o o s e V i s u a l i z a t i o n {

p u b l i c boolean o t h e r V i s = f a l s e ;

b e f or e (S t r i n g [] a) :
e x e c u t i o n (∗ Main . main (S t r i n g []))

&& args (a) {
/∗ i f a c o n t a i n s t h e parame te r t o swap

v i s u a l i z a t i o n s t h e n o t h e r V i s i s s e t
t o t r u e ∗ /

}

d e c l a r e r u l e d e f a u l t V i s :
a d v i c e s (Vi sAspec t1 .∗ , V i sAspec t2 .∗)

&& i f (! o t h e r V i s) {
I g n o r e (Vi sAspec t2 . ∗) ;

} ;

d e c l a r e r u l e o t h e r V i s :
a d v i c e s (Vi sAspec t1 .∗ , V i sAspec t2 .∗)

&& i f (o t h e r V i s) {
I g n o r e (Vi sAspec t1 . ∗) ;

}
} �
The single advice of this aspect intercepts the execution of the

main method in order to set otherVis to true if the appropriate
argument has been given at launch. The rule defaultVis declares that
all visualizations implemented in advices of the aspect VisAspect1
are chosen by default. But if the boolean otherVis has been set to
true then the second rule is taken into account instead of the default
one and the visualizations of VisAspect2 are used.

Note that some aspect languages have specific statements to
enable/disable aspects at runtime. But using rules for this enforces
programmers to consider it as an extendable part of the composition
strategy.

5.2 Using rules to capture aspect code around join points
Let’s imagine now that we want to log the changes of state made by
the aspects woven just before a particular type of join points (a call
to foo() for instance). We can implement this by using a boolean:
logging has to be done on all join points where the boolean equals
true. We just need to specify that this boolean equals true only
when the advices preceding a call to foo() are executed.�

p u b l i c a s p e c t LogAspectCode {

p u b l i c boolean l o g = f a l s e ;

b e f or e () b e f o r e F i r s t : c a l l (∗ ∗ . foo (. .)) {
l o g = t rue ;

}

b e f or e () b e f o r e L a s t : c a l l (∗ ∗ . foo (. .)) {
l o g = f a l s e ;

}

b e f or e () l ogAdv ice : s e t (∗ ∗ .∗) && i f (l o g) {
/∗ Log i n f o r m a t i o n s ∗ /

}

d e c l a r e r u l e l o g B e f o r e :
a d v i c e s (b e f o r e F i r s t , b e f o r e L a s t) {

F i r s t (b e f o r e F i r s t) ;
L a s t (b e f o r e L a s t) ;

} ;
} �
The aspect shown has three advices: logAdvices does the actual

logging, beforeFirst sets the boolean to true and beforeLast to
false. The rule declares that beforeFirst has to be the advice that is
executed first while beforeLast has to be the last one. This ensures

that all other advices executed just before a call to foo() will be
executed between those two and thus in a context where the boolean
equals true and where the logging is done.

In this example, the rule is declared in the same aspect as the
advices it refers to instead of being declared in a composition
aspect. This makes sense since the rule only serves the purpose
of the aspect and not its integration in the composition.

6. Future Work
First of all we would like to finish our implementation using the ex-
tensible ASPECTBENCH COMPILER[1] and then perform a number
of case studies on real examples. Last but not least we want to help
composers of aspects spot composition problems and understand
the semantics of the composition they are making.

7. Conclusion
Composing aspects is not a trivial task. We view this problem as
a cross-cutting concern in need of its domain-specific language
that enables composers to express compositions easily. We propose
a declarative aspect composition language based on only three
concepts (composition rules, constraints and contexts) that directly
deal with composition.

Composing aspects is known to be problematic since unpre-
dicted aspect interactions may appear and may lead to erroneous
weaved programs. This paper focuses on one of these issues: the
advice ordering around a join point. It views aspect composition
issues as a crosscutting concern that should be handled by a com-
position aspect. It proposes a domain-specific declarative aspect
composition language for composing aspects, and applies it on a
number of examples.

Acknowledgments
We would like to thank Maja D’Hondt, Thomas Cleenewerck and
the anonymous reviewers for their useful advice and references.

References
[1] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,

Sascha Kuzins, Jennifer Lhoták, Ondřej Lhoták, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, and Julian Tibble. abc:
An extensible aspectj compiler. In Peri Tarr, editor, 4th Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD), pages 87–98. ACM Press, 2005.

[2] Rémi Douence, Pascal Fradet, and Mario Südholt. Composi-
tion, reuse and interaction analysis of stateful aspects. In AOSD
’04: Proceedings of the 3rd international conference on Aspect-
oriented software development, pages 141–150, New York, NY,
USA, March 2004. ACM Press.

[3] Andy Kellens, Kris Gybels, Johan Brichau, and Kim Mens. A
model-driven pointcut language for more robust pointcuts. In
Workshop on Software Engineering Properties of Languages
and Aspect Technologies (SPLAT! 2006), 2006.

[4] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G. Griswold. An overview of aspectj. In
ECOOP ’01: Proceedings of the 15th European Conference on
Object-Oriented Programming, pages 327–353, London, UK,
2001. Springer-Verlag. ISBN 3-540-42206-4.

[5] Karl Lieberherr, David Lorenz, and Mira Mezini. Programming
with aspectual components. Technical Report NU-CCS-99-01,
Northeastern University, March 1999.

[6] Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. Declar-
ative aspect composition. In 2nd Software-Engineering Prop-
erties of Languages and Aspect Technologies Workshop, 2004.

[7] Davy Suvee, Wim Vanderperren, and Viviane Jonckers. Jasco:
an aspect-oriented approach tailored for component based soft-
ware development. In ACM Press, editor, Proceedings of inter-
national conference on aspect-oriented software development
(AOSD), pages 21–29, Boston, USA, March 2003.

